Skip to main content

Advertisement

Log in

A portable platform for stepwise hematopoiesis from human pluripotent stem cells within PET-reinforced collagen sponges

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Various systems for differentiating hematopoietic cells from human pluripotent stem cells (PSCs) have been developed, although none have been fully optimized. In this report, we describe the development of a novel three-dimensional system for differentiating hematopoietic cells from PSCs using collagen sponges (CSs) reinforced with poly(ethylene terephthalate) fibers as a scaffold. PSCs seeded onto CSs were differentiated in a stepwise manner with appropriate cytokines under serum-free and feeder-free conditions. This process yielded several lineages of floating hematopoietic cells repeatedly for more than 1 month. On immunohistochemical staining, we detected CD34+ cells and CD45+ cells in the surface and cavities of the CS. Taking advantage of the portability of this system, we were able to culture multiple CSs together floating in medium, making it possible to harvest large numbers of hematopoietic cells repeatedly. Given these findings, we suggest that this novel three-dimensional culture system may be useful in the large-scale culture of PSC-derived hematopoietic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, et al. A more efficient method to generate integration-free human iPS cells. Nat Methods. 2011;8:409–12.

    Article  CAS  PubMed  Google Scholar 

  2. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  CAS  PubMed  Google Scholar 

  3. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  CAS  PubMed  Google Scholar 

  4. Kennedy M, Firpo M, Choi K, Wall C, Robertson S, Kabrun N, et al. A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature. 1997;386:488–93.

    Article  CAS  PubMed  Google Scholar 

  5. Wang L, Menendez P, Shojaei F, Li L, Mazurier F, Dick JE, et al. Generation of hematopoietic repopulating cells from human embryonic stem cells independent of ectopic HOXB4 expression. J Exp Med. 2005;201:1603–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kubo A, Shinozaki K, Shannon JM, Kouskoff V, Kennedy M, Woo S, et al. Development of definitive endoderm from embryonic stem cells in culture. Development (Cambridge, England). 2004;131:1651–62.

    Article  CAS  Google Scholar 

  7. Oshima M, Endoh M, Endo TA, Toyoda T, Nakajima-Takagi Y, Sugiyama F, et al. Genome-wide analysis of target genes regulated by HoxB4 in hematopoietic stem and progenitor cells developing from embryonic stem cells. Blood. 2011;117:e142–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Takayama N, Nishimura S, Nakamura S, Shimizu T, Ohnishi R, Endo H, et al. Transient activation of c-MYC expression is critical for efficient platelet generation from human induced pluripotent stem cells. J Exp Med. 2010;207:2817–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Takayama N, Nishikii H, Usui J, Tsukui H, Sawaguchi A, Hiroyama T, et al. Generation of functional platelets from human embryonic stem cells in vitro via ES-sacs, VEGF-promoted structures that concentrate hematopoietic progenitors. Blood. 2008;111:5298–306.

    Article  CAS  PubMed  Google Scholar 

  10. Vodyanik MA, Bork JA, Thomson JA. Slukvin, Ii. Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood. 2005;105:617–26.

    Article  CAS  PubMed  Google Scholar 

  11. Nakano T, Kodama H, Honjo T. In vitro development of primitive and definitive erythrocytes from different precursors. Science (New York, N.Y.). 1996;272:722–4.

    Article  CAS  Google Scholar 

  12. Nakano T, Kodama H, Honjo T. Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science (New York, N.Y.). 1994;265:1098–101.

    Article  CAS  Google Scholar 

  13. Choi KD, Vodyanik MA, Togarrati PP, Suknuntha K, Kumar A, Samarjeet F, et al. Identification of the hemogenic endothelial progenitor and its direct precursor in human pluripotent stem cell differentiation cultures. Cell Rep. 2012;2:553–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Choi KD, Vodyanik MA. Slukvin, Ii. Generation of mature human myelomonocytic cells through expansion and differentiation of pluripotent stem cell-derived lin-CD34 + CD43 + CD45 + progenitors. J Clin Investig. 2009;119:2818–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Choi KD, Vodyanik M, Slukvin II. Hematopoietic differentiation and production of mature myeloid cells from human pluripotent stem cells. Nat Protocol. 2011;6:296–313.

    Article  CAS  Google Scholar 

  16. Niwa A, Heike T, Umeda K, Oshima K, Kato I, Sakai H, et al. A novel serum-free monolayer culture for orderly hematopoietic differentiation of human pluripotent cells via mesodermal progenitors. PLoS One. 2011;6:e22261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yanagimachi MD, Niwa A, Tanaka T, Honda-Ozaki F, Nishimoto S, Murata Y, et al. Robust and highly-efficient differentiation of functional monocytic cells from human pluripotent stem cells under serum- and feeder cell-free conditions. PLoS One. 2013;8:e59243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Salvagiotto G, Burton S, Daigh CA, Rajesh D, Slukvin II, Seay NJ. A defined, feeder-free, serum-free system to generate in vitro hematopoietic progenitors and differentiated blood cells from hESCs and hiPSCs. PLoS One. 2011;6:e17829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morrison SJ, Shah NM, Anderson DJ. Regulatory mechanisms in stem cell biology. Cell. 1997;88:287–98.

    Article  CAS  PubMed  Google Scholar 

  20. Adams GB, Scadden DT. The hematopoietic stem cell in its place. Nat Immunol. 2006;7:333–7.

    Article  CAS  PubMed  Google Scholar 

  21. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003;425:841–6.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 2003;425:836–41.

    Article  CAS  PubMed  Google Scholar 

  23. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005;121:1109–21.

    Article  CAS  PubMed  Google Scholar 

  24. Raynaud CM, Butler JM, Halabi NM, Ahmad FS, Ahmed B, Rafii S, et al. Endothelial cells provide a niche for placental hematopoietic stem/progenitor cell expansion through broad transcriptomic modification. Stem Cell Res. 2013;11:1074–90.

    Article  CAS  PubMed  Google Scholar 

  25. Corselli M, Chin CJ, Parekh C, Sahaghian A, Wang W, Ge S, et al. Perivascular support of human hematopoietic stem/progenitor cells. Blood. 2013;121:2891–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pinho S, Lacombe J, Hanoun M, Mizoguchi T, Bruns I, Kunisaki Y, et al. PDGFRalpha and CD51 mark human nestin + sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J Exp Med. 2013;210:1351–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Heazlewood SY, Neaves RJ, Williams B, Haylock DN, Adams TE, Nilsson SK. Megakaryocytes co-localise with hemopoietic stem cells and release cytokines that up-regulate stem cell proliferation. Stem Cell Res. 2013;11:782–92.

    Article  CAS  PubMed  Google Scholar 

  28. Olson TS, Caselli A, Otsuru S, Hofmann TJ, Williams R, Paolucci P, et al. Megakaryocytes promote murine osteoblastic HSC niche expansion and stem cell engraftment after radioablative conditioning. Blood. 2013;121:5238–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466:829–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yamazaki S, Nakauchi H. Bone marrow Schwann cells induce hematopoietic stem cell hibernation. Int J Hematol. 2014;99:695–8.

    Article  CAS  PubMed  Google Scholar 

  31. Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, et al. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell. 2011;147:1146–58.

    Article  CAS  PubMed  Google Scholar 

  32. Medvinsky A, Dzierzak E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell. 1996;86:897–906.

    Article  CAS  PubMed  Google Scholar 

  33. Muller AM, Medvinsky A, Strouboulis J, Grosveld F, Dzierzak E. Development of hematopoietic stem cell activity in the mouse embryo. Immunity. 1994;1:291–301.

    Article  CAS  PubMed  Google Scholar 

  34. Medvinsky AL, Samoylina NL, Muller AM, Dzierzak EA. An early pre-liver intraembryonic source of CFU-S in the developing mouse. Nature. 1993;364:64–7.

    Article  CAS  PubMed  Google Scholar 

  35. Sugimura R, He XC, Venkatraman A, Arai F, Box A, Semerad C, et al. Noncanonical Wnt signaling maintains hematopoietic stem cells in the niche. Cell. 2012;150:351–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Asada N, Katayama Y. Regulation of hematopoiesis in endosteal microenvironments. Int J Hematol. 2014;99:679–84.

    Article  CAS  PubMed  Google Scholar 

  37. Chadwick K, Wang L, Li L, Menendez P, Murdoch B, Rouleau A, et al. Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood. 2003;102:906–15.

    Article  CAS  PubMed  Google Scholar 

  38. Wang L, Li L, Shojaei F, Levac K, Cerdan C, Menendez P, et al. Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity. 2004;21:31–41.

    Article  CAS  PubMed  Google Scholar 

  39. Takamoto T, Hiraoka Y, Tabata Y. Enhanced proliferation and osteogenic differentiation of rat mesenchymal stem cells in collagen sponge reinforced with different poly(ethylene terephthalate) fibers. J Biomater Sci Polym Ed. 2007;18:865–81.

    Article  CAS  PubMed  Google Scholar 

  40. Suwabe N, Takahashi S, Nakano T, Yamamoto M. GATA-1 regulates growth and differentiation of definitive erythroid lineage cells during in vitro ES cell differentiation. Blood. 1998;92:4108–18.

    CAS  PubMed  Google Scholar 

  41. Nakahata T, Ogawa M. Identification in culture of a class of hemopoietic colony-forming units with extensive capability to self-renew and generate multipotential hemopoietic colonies. Proc Natl Acad Sci USA. 1982;79:3843–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nakahata T, Ogawa M. Hemopoietic colony-forming cells in umbilical cord blood with extensive capability to generate mono- and multipotential hemopoietic progenitors. J Clin Invest. 1982;70:1324–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nakahata T, Spicer SS, Ogawa M. Clonal origin of human erythro-eosinophilic colonies in culture. Blood. 1982;59:857–64.

    CAS  PubMed  Google Scholar 

  44. Son MY, Choi H, Han YM, Cho YS. Unveiling the critical role of REX1 in the regulation of human stem cell pluripotency. Stem Cells. 2013;31:2374–87.

    Article  CAS  PubMed  Google Scholar 

  45. Ferrell PI, Xi J, Ma C, Adlakha M, Kaufman DS. The RUNX1 +24 enhancer and P1 promoter identify a unique subpopulation of hematopoietic progenitor cells derived from human pluripotent stem cells. Stem Cells. 2015;33:1130–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vodyanik MA, Yu J, Zhang X, Tian S, Stewart R, Thomson JA, et al. A mesoderm-derived precursor for mesenchymal stem and endothelial cells. Cell Stem Cell. 2010;7:718–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lancrin C, Sroczynska P, Stephenson C, Allen T, Kouskoff V, Lacaud G. The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature. 2009;457:892–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Leisten I, Kramann R, Ventura Ferreira MS, Bovi M, Neuss S, Ziegler P, et al. 3D co-culture of hematopoietic stem and progenitor cells and mesenchymal stem cells in collagen scaffolds as a model of the hematopoietic niche. Biomaterials. 2012;33:1736–47.

    Article  CAS  PubMed  Google Scholar 

  49. Mortera-Blanco T, Mantalaris A, Bismarck A, Aqel N, Panoskaltsis N. Long-term cytokine-free expansion of cord blood mononuclear cells in three-dimensional scaffolds. Biomaterials. 2011;32:9263–70.

    Article  CAS  PubMed  Google Scholar 

  50. Blanco TM, Mantalaris A, Bismarck A, Panoskaltsis N. The development of a three-dimensional scaffold for ex vivo biomimicry of human acute myeloid leukaemia. Biomaterials. 2010;31:2243–51.

    Article  CAS  PubMed  Google Scholar 

  51. Kumar SS, Hsiao JH, Ling QD, Dulinska-Molak I, Chen G, Chang Y, et al. The combined influence of substrate elasticity and surface-grafted molecules on the ex vivo expansion of hematopoietic stem and progenitor cells. Biomaterials. 2013;34:7632–44.

    Article  CAS  PubMed  Google Scholar 

  52. Slukvin II. Hematopoietic specification from human pluripotent stem cells: current advances and challenges toward de novo generation of hematopoietic stem cells. Blood. 2013;122:4035–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Miyazaki T, Futaki S, Suemori H, Taniguchi Y, Yamada M, Kawasaki M, et al. Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nat Commun. 2012;3:1236.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Brafman DA, Phung C, Kumar N, Willert K. Regulation of endodermal differentiation of human embryonic stem cells through integrin-ECM interactions. Cell Death Differ. 2013;20:369–81.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang L, Stauffer WR, Jane EP, Sammak PJ, Cui XT. Enhanced differentiation of embryonic and neural stem cells to neuronal fates on laminin peptides doped polypyrrole. Macromol Biosci. 2010;10:1456–64.

    Article  PubMed  Google Scholar 

  56. Liu Y, Wang X, Kaufman DS, Shen W. A synthetic substrate to support early mesodermal differentiation of human embryonic stem cells. Biomaterials. 2011;32:8058–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Y. Sasaki and M. Yamane for their technical assistance, H. Watanabe for the administrative assistance and M. Osawa, M. Yanagimachi, T. Tanaka, M. Matsui, and S. Tajima for critical discussions. We are grateful to the Center for Anatomical, Pathological and Forensic Medical Researches, Graduate School of Medicine, Kyoto University for the Immunohistochemistry (IHC) analysis. Funding was provided by grants from the Ministry of Health, Labour and Welfare to T.N. and M.K.S., grants from the Leading Project of MEXT to T.N., a grant from the Funding Program for World-Leading Innovative Research and Development on Science and Technology (FIRST Program) of the Japan Society for the Promotion of Science (JSPS) to T.N., JSPS KAKENHI Grant No. JP25860856 to A.N., Japan Science and Technology Agency CREST to T.N., the Program for Intractable Diseases Research utilizing disease-specific iPS cells from Japan Agency for Medical Research and Development (AMED) to T.N., the grant for Core Center for iPS Cell Research of Research Center Network for Realization of Regenerative Medicine from AMED to T.N. and M.K.S, and grants from the JSPS to T.N. and M.K.S. All of the funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megumu K. Saito.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Y. Sugimine and A. Niwa contributed equally to this work.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugimine, Y., Niwa, A., Matsubara, H. et al. A portable platform for stepwise hematopoiesis from human pluripotent stem cells within PET-reinforced collagen sponges. Int J Hematol 104, 647–660 (2016). https://doi.org/10.1007/s12185-016-2088-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-016-2088-x

Keywords

Navigation