Skip to main content

Advertisement

Log in

SF3B1 and IGHV gene mutation status predict poor prognosis in Japanese CLL patients

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The incidence of chronic lymphocytic leukemia (CLL) is low in Japan. The clinical course ranges from very indolent to rapidly progressive. Recently, several reports have indicated that mutation of the splicing factor 3b, subunit 1 (SF3B1) gene in CLL is predictive of a poor prognosis. Here, we investigated the SF3B1 mutational status of Japanese CLL patients and clarified the association between SF3B1 mutational status and prognostic factors. One hundred and two patients that were referred to our institutions between 1999 and 2013 were enrolled. Mutation analysis of SF3B1 (n = 87) and of the immunoglobulin heavy chain gene (IGHV) (n = 102) was performed at diagnosis. FISH analysis of del(11)(q22) was performed for 17 patients. Seven patients have SF3B1 mutation (8.0 %: K700E, 5/7; G742D, 1/7 and Y623C, 1/7). The median survival times for patients with mutated and non-mutated SF3B1 were 53 and 130 months, respectively. Overall survival of the mutated SF3B1 group was significantly lower than that of the non-mutated group (p = 0.0187). No relationship was observed between IGHV mutational status and SF3B1 mutation. There was no patient with SF3B1 mutation in the IGHV1-69 population (0/2). In conclusion, mutation of SF3B1 at diagnosis in Japanese CLL patients is predictive of a poor prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW. WHO classification of tumours of haematopoietic and lymphoid tissues. 4rd ed. IARC; 2008.

  2. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999;94:1848–54.

    CAS  PubMed  Google Scholar 

  3. Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood. 1999;94:1840–7.

    CAS  PubMed  Google Scholar 

  4. Zwiebel JA, Cheson BD. Chronic lymphocytic leukemia: staging and prognostic factors. Semin Oncol. 1998;25:42–59.

    CAS  PubMed  Google Scholar 

  5. Del Principe MI, Del Poeta G, Buccisano F, Maurillo L, Venditti A, Zucchetto A, et al. Clinical significance of ZAP-70 protein expression in B-cell chronic lymphocytic leukemia. Blood. 2006;108:853–61.

    Article  PubMed  Google Scholar 

  6. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343:1910–6.

    Article  CAS  PubMed  Google Scholar 

  7. Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K, et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med. 2011;365:2497–506.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Quesada V, Conde L, Villamor N, Ordonez GR, Jares P, Bassaganyas L, et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet. 2012;44:47–52.

    Article  CAS  Google Scholar 

  9. Rossi D, Bruscaggin A, Spina V, Rasi S, Khiabanian H, Messina M, et al. Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine-refractoriness. Blood. 2011;118:6904–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Nishiyama H, Mokuno J, Inoue T. Relative frequency and mortality rate of various types of leukemia in Japan. Gann. 1969;60:71–81.

    CAS  PubMed  Google Scholar 

  11. Gale RP, Cozen W, Goodman MT, Wang FF, Bernstein L. Decreased chronic lymphocytic leukemia incidence in Asians in Los Angeles County. Leuk Res. 2000;24:665–9.

    Article  CAS  PubMed  Google Scholar 

  12. Weiss NS. Geographical variation in the incidence of the leukemias and lymphomas. Natl Cancer Inst Monogr. 1979;(53):139–142.

  13. Koiso H, Yamane A, Mitsui T, Matsushima T, Tsukamoto N, Murakami H, et al. Distinctive immunoglobulin VH gene usage in Japanese patients with chronic lymphocytic leukemia. Leuk Res. 2006;30:272–6.

    Article  CAS  PubMed  Google Scholar 

  14. Nakahashi H, Tsukamoto N, Hashimoto Y, Koiso H, Yokohama A, Saitoh T, et al. Characterization of immunoglobulin heavy and light chain gene expression in chronic lymphocytic leukemia and related disorders. Cancer Sci. 2009;100:671–7.

    Article  CAS  PubMed  Google Scholar 

  15. Koiso H, Tsukamoto N, Miyawaki S, Shinonome S, Nojima Y, Karasawa M. Quantitative analysis of Cyclin D1 and CD23 expression in mantle cell lymphoma and B-chronic lymphocytic leukemia. Leuk Res. 2002;26:809–15.

    Article  CAS  PubMed  Google Scholar 

  16. Isoda A, Yokohama A, Matsushima T, Tsukamoto N, Nojima Y, Karasawa M. The naive T-lymphocyte compartment is well preserved in patients with chronic myelogenous leukaemia in chronic phase. Br J Haematol. 2002;119:949–55.

    Article  PubMed  Google Scholar 

  17. Fais F, Ghiotto F, Hashimoto S, Sellars B, Valetto A, Allen SL, et al. Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest. 1998;102:1515–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Küppers R, Zhao M, Rajewsky K, Hansmann ML. Detection of clonal B cell populations in paraffin-embedded tissues by polymerase chain reaction. Am J Pathol. 1993;143:230–9.

    PubMed Central  PubMed  Google Scholar 

  19. van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2003;17:2257–317.

    Article  PubMed  Google Scholar 

  20. Malcovati L, Papaemmanuil E, Bowen DT, Boultwood J, Della Porta MG, Pascutto C, et al. Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Blood. 2011;118:6239–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Patnaik MM, Lasho TL, Hodnefield JM, Knudson RA, Ketterling RP, Garcia-Manero G, et al. SF3B1 mutations are prevalent in myelodysplastic syndromes with ring sideroblasts but do not hold independent prognostic value. Blood. 2012;119:569–72.

    Article  CAS  PubMed  Google Scholar 

  22. Lin K, Sherrington PD, Dennis M, Matrai Z, Cawley JC, Pettitt AR. Relationship between p53 dysfunction, CD38 expression, and IgV(H) mutation in chronic lymphocytic leukemia. Blood. 2002;100:1404–9.

    Article  CAS  PubMed  Google Scholar 

  23. Krober A, Seiler T, Benner A, Bullinger L, Bruckle E, Lichter P, et al. V(H) mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood. 2002;100:1410–6.

    CAS  PubMed  Google Scholar 

  24. Zenz T, Eichhorst B, Busch R, Denzel T, Habe S, Winkler D, et al. TP53 mutation and survival in chronic lymphocytic leukemia. J Clin Oncol. 2010;28:4473–9.

    Article  PubMed  Google Scholar 

  25. Jeromin S, Weissmann S, Haferlach C, Dicker F, Bayer K, Grossmann V, et al. SF3B1 mutations correlated to cytogenetics and mutations in NOTCH1, FBXW7, MYD88, XPO1 and TP53 in 1160 untreated CLL patients. Leukemia. 2014;28:108–17.

    Article  CAS  PubMed  Google Scholar 

  26. Strefford JC, Sutton LA, Baliakas P, Agathangelidis A, Malcikova J, Plevova K, et al. Distinct patterns of novel gene mutations in poor-prognostic stereotyped subsets of chronic lymphocytic leukemia: the case of SF3B1 and subset #2. Leukemia. 2013;27:2196–9.

    Article  CAS  PubMed  Google Scholar 

  27. Wan Y, Wu CJ. SF3B1 mutations in chronic lymphocytic leukemia. Blood. 2013;121:4627–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Isono K, Mizutani-Koseki Y, Komori T, Schmidt-Zachmann MS, Koseki H. Mammalian polycomb-mediated repression of Hox genes requires the essential spliceosomal protein Sf3b1. Genes Dev. 2005;19:536–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Kulis M, Heath S, Bibikova M, Queiros AC, Navarro A, Clot G, et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat Genet. 2012;44:1236–42.

    Article  CAS  PubMed  Google Scholar 

  30. Kipps TJ, Tomhave E, Pratt LF, Duffy S, Chen PP, Carson DA. Developmentally restricted immunoglobulin heavy chain variable region gene expressed at high frequency in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 1989;86:5913–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Grant-in-Aid for Scientific Research (C), and by the National Cancer Research and Development Fund (26-A-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeki Mitsui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitsui, T., Koiso, H., Nakahashi, H. et al. SF3B1 and IGHV gene mutation status predict poor prognosis in Japanese CLL patients. Int J Hematol 103, 219–226 (2016). https://doi.org/10.1007/s12185-015-1912-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-015-1912-z

Keywords

Navigation