Skip to main content
Log in

Oncogenic microRNA-155 and its target PU.1: an integrative gene expression study in six of the most prevalent lymphomas

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The transcription factor PU.1 and its inhibitory microRNA-155 (miR-155) are important regulators of B-cell differentiation. PU.1 downregulation coupled with oncogenic miR-155 upregulation has been reported in lymphoid malignancies; however, these data have not been studied across different subtypes in relation to clinical outcomes. We studied expression of miR-155 and PU.1 in the six most prevalent human B-cell lymphomas (n = 131) including aggressive (DLBCL, HL, MCL) and indolent (B-CLL/SLL, MZL, FL) types. Levels of miR-155 and PU.1 inversely correlated in DLBCL, B-CLL/SLL, and FL tumor tissues. In HL tissues, an exceptionally high level of miR-155 was found in patients with unfavorable responses to first-line therapy and those who had shorter survival times. PU.1 downregulation was noted in B-CLL/SLL samples positive for the adverse prognostic markers CD38 and ZAP-70. Upregulation of miR-155 and downregulation of PU.1 expression are integral aspects of lymphoma biology that could mark aggressive behavior of some, but not all, lymphoma types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Guo H, Ingolia N, Weissman J, Bartel D. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466(7308):835–40. doi: 10.1038/nature09267.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Dalmay T. MicroRNAs and cancer. J Intern Med. 2008;263(4):366–75. doi:10.1111/j.1365-2796.2008.01926.x.

    Article  CAS  PubMed  Google Scholar 

  3. Fabbri M, Croce C. Role of microRNAs in lymphoid biology and disease. Curr Opin Hematol. 2011;18(4):266–72. doi:10.1097/MOH.0b013e3283476012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N, et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci. 2006;103(18):7024–9 (0602266103[pii]/pnas.0602266103).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Babar IA, Cheng CJ, Booth CJ, Liang X, Weidhaas JB, Saltzman WM, et al. Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci. 2012;109(26):E1695–704. doi:10.1073/pnas.1201516109.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Eis P, Tam W, Sun L, Chadburn A, Li Z, Gomez M, et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci. 2005;102(10):3627–32. doi:10.1073/pnas.0500613102.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S, et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol. 2005;207(2):243–9. doi:10.1002/path.1825.

    Article  CAS  PubMed  Google Scholar 

  8. Lawrie CH, Soneji S, Marafioti T, Cooper CD, Palazzo S, Paterson JC, et al. MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int J Cancer. 2007;121(5):1156–61. doi:10.1002/ijc.22800.

    Article  CAS  PubMed  Google Scholar 

  9. Vargova K, Curik N, Burda P, Basova P, Kulvait V, Pospisil V, et al. MYB transcriptionally regulates the miR-155 host gene in chronic lymphocytic leukemia. Blood. 2011;117(14):3816–25. doi:10.1182/blood-2010-05-285064.

    Article  CAS  PubMed  Google Scholar 

  10. Zhao J, Lin J, Lwin T, Yang H, Guo J, Kong W, et al. microRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood. 2010;115(13):2630–9. doi:10.1182/blood-2009-09-243147.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Bolland S, Pearse R, Kurosaki T, Ravetch J. SHIP modulates immune receptor responses by regulating membrane association of Btk. Immunity. 1998;8(4):509–16. doi:10.1016/S1074-7613(00)80555-5.

    Article  CAS  PubMed  Google Scholar 

  12. Maehama T, Dixon J. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998;273(22):13375–8. doi:10.1074/jbc.273.22.13375.

    Article  CAS  PubMed  Google Scholar 

  13. Dahl R, Simon M. The importance of PU.1 concentration in hematopoietic lineage commitment and maturation. Blood Cells Mol Dis. 2003;31(2):229–33 (S1079979603001529 [pii]).

    Article  CAS  PubMed  Google Scholar 

  14. Vigorito E, Perks K, Abreu-Goodger C, Bunting S, Xiang Z, Kohlhaas S, et al. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity. 2007;27(6):847–59. doi:10.1016/j.immuni.2007.10.009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Lu D, Nakagawa R, Lazzaro S, Staudacher P, Abreu-Goodger C, Henley T, et al. The miR-155-PU.1 axis acts on Pax5 to enable efficient terminal B cell differentiation. J Exp Med. 2014;211(11):2183–98. doi:10.1084/jem.20140338.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Houston IB, Kamath MB, Schweitzer BL, Chlon TM, DeKoter RP. Reduction in PU.1 activity results in a block to B-cell development, abnormal myeloid proliferation, and neonatal lethality. Exp Hematol. 2007;35(7):1056–68. doi:10.1016/j.exphem.2007.04.005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Polli M, Dakic A, Light A, Wu L, Tarlinton DM, Nutt SL. The development of functional B lymphocytes in conditional PU.1 knock-out mice. Blood. 2005;106(6):2083–90. doi:10.1182/blood-2005-01-0283.

    Article  CAS  PubMed  Google Scholar 

  18. Yuki H, Ueno S, Tatetsu H, Niiro H, Iino T, Endo S, et al. PU.1 is a potent tumor suppressor in classical Hodgkin lymphoma cells. Blood. 2013;121(6):962–70. doi:10.1182/blood-2012-05-431429.

    Article  CAS  PubMed  Google Scholar 

  19. Torlakovic E, Bilalovic N, Golouh R, Zidar A, Angel S. Prognostic significance of PU.I in follicular lymphoma. J Pathol. 2006;209(3):352–9. doi:10.1002/path.1986.

    Article  CAS  PubMed  Google Scholar 

  20. Deeb S, D’Souza R, Cox J, Schmidt-Supprian M, Mann M. Super-SILAC allows classification of diffuse large B-cell lymphoma subtypes by their protein expression profiles. Mol Cell Proteomics. 2012;11(5):77–89. doi:10.1074/mcp.M111.015362.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8. doi:10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  22. Leddin M, Perrod C, Hoogenkamp M, Ghani S, Assi S, Heinz S, et al. Two distinct auto-regulatory loops operate at the PU.1 locus in B cells and myeloid cells. Blood. 2011;117(10):2827–38. doi:10.1182/blood-2010-08-302976.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Gibcus JH, Tan LP, Harms G, Schakel RN, de Jong D, Blokzijl T, et al. Hodgkin lymphoma cell lines are characterized by a specific miRNA expression profile. Neoplasia. 2009;11(2):167–76 (PubMed PMID: 19177201; PubMed Central PMCID: PMCPMC2631141).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Ferrer A, Salaverria I, Bosch F, Villamor N, Rozman M, Beà S, et al. Leukemic involvement is a common feature in mantle cell lymphoma. Cancer. 2007;109(12):2473–80. doi:10.1002/cncr.22715.

    Article  CAS  PubMed  Google Scholar 

  25. Domingo-Domenech E, Domingo-Claros A, Gonzalez-Barca E, Beneitez D, Alonso E, Romagosa V, et al. CD38 expression in B-cell chronic lymphocytic leukemia: association with clinical presentation and outcome in 155 patients. Haematologica. 2002;87(10):1021–7 (PubMed PMID: WOS:000178629900004).

    PubMed  Google Scholar 

  26. Durig J, Nuckel H, Cremer M, Fuhrer A, Halfmeyer K, Fandrey J, et al. ZAP-70 expression is a prognostic factor in chronic lymphocytic leukemia. Leukemia. 2003;17(12):2426–34. doi:10.1038/sj.leu.2403147.

    Article  CAS  PubMed  Google Scholar 

  27. Schroers R, Griesinger F, Trümper L, Haase D, Kulle B, Klein-Hitpass L, et al. Combined analysis of ZAP-70 and CD38 expression as a predictor of disease progression in B-cell chronic lymphocytic leukemia. Leukemia. 2005;19(5):750–8. doi:10.1038/sj.leu.2403707.

    Article  CAS  PubMed  Google Scholar 

  28. Ferrajoli AS, Tait D. Ivan, Cristina Shimizu, Masayoshi Rabe, Kari G. Nouraee, Nazila Ikuo, Mariko Ghosh, Asish K. Lerner, Susan Rassenti, Laura Z. Xiao, Lianchun Hu, Jianhua Reuben, James M. Calin, Steliana You, M. James Manning, John T. Wierda, William G. Estrov, Zeev O’Brien, Susan Kipps, Thomas J. Keating, Michael J. Kay, Neil E. Calin, George A. Prognostic value of miR-155 in individuals with monoclonal B-cell lymphocytosis and patients with B-chronic lymphocytic leukemia. Blood; 2013; 122(11):1891–9. doi:10.1182/blood-2013-01-478222.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors appreciate P. Basova’s help with expression determination, and thank V. Kulvait for discussions on the statistical analyses. Grants: Primary support: GACR P305/12/1033, GAUK-84314; Institutional: UNCE 204021, PRVOUK-P24/LF1/1 and 3, SVV-2014-260033, BIOCEV—Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (CZ.1.05/1.1.00/02.0109), from the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Stopka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 63 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huskova, H., Korecka, K., Karban, J. et al. Oncogenic microRNA-155 and its target PU.1: an integrative gene expression study in six of the most prevalent lymphomas. Int J Hematol 102, 441–450 (2015). https://doi.org/10.1007/s12185-015-1847-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-015-1847-4

Keywords

Navigation