Skip to main content

Advertisement

Log in

Increased CD34+CD38CD123+ cells in myelodysplastic syndrome displaying malignant features similar to those in AML

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Leukocyte interleukin-3 receptor α (CD123) is regarded as a marker of leukemia stem cells. We previously found that CD123 was also highly expressed on CD34+CD38 cells in myelodysplastic syndrome (MDS) patients, but it is unclear whether the level and the characteristics of CD34+CD38CD123+ cells in MDS are similar to those in acute myeloid leukemia (AML). Based on previous research by our team, we further enlarged the specimens and found that the mean proportion and the mean MFI of CD34+CD38CD123+ cells in low-grade MDS were lower than that in AML, and those in high-grade MDS were similar to those in AML. CD34+CD38CD123+ cells expressed lower granulocyte stimulating factor receptor, CD11b, and apoptosis molecule (Annexin V), meanwhile, these cells showed upregulation of transcription factors (GATA-1, GATA-2) and transferrin receptor (CD71) in MDS and AML. Furthermore, an increase in CD34+CD38CD123+ cells was closely related to the number of cytopenias involving hematopoietic lineages, anemia, blast count in bone marrow smear, fluorescence in situ hybridization analysis and WHO prognostic scoring system score. Thus, increases in CD34+CD38CD123+ cells may reflect malignant clonal cells with aberrant differentiation, overproliferation, and decreased apoptosis in MDS, which were similar to AML. CD123 may thus be a promising indicator for identifying malignant clonal cells in MDS and a candidate for targeted therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Testa U, Riccioni R, Militi S, Coccia E, Stellacci E, Samoggia P, et al. Elevated expression of IL-3Rα in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity, and poor prognosis. Blood. 2002;100:2980–8.

    Article  CAS  PubMed  Google Scholar 

  2. Yue L, Shao Z. Multi-parameter diagnosis of myelodysplastic syndrome. Chin J Pract Intern Med. 2010;30(5):389–92.

    Google Scholar 

  3. Yue LZ, Fu R, Wang HQ, Li LJ, Shao ZH. Expression of CD123 and CD114 on the bone marrow cells of patients with myelodysplastic syndrome. Chin Med J (Engl). 2010;123(15):2034–7.

    CAS  Google Scholar 

  4. Tang G, Jorgensen LJ, Zhou Y, Hu Y, Kersh M, Wang SA, et al. Multi-color CD34+ progenitor-focused flow cytometric assay in evaluation of myelodysplastic syndromes in patients with post cancer therapy cytopenia. Leuk Res. 2012;36(8):974–81.

    Article  PubMed  Google Scholar 

  5. De Smet D, Trullemans F, Jochmans K, Renmans W, Smet L, De Waele M, et al. Diagnostic potential of CD34+ cell antigen expression in myelodysplastic syndromes. Am J Clin Pathol. 2012;138(5):732–43.

    Article  PubMed  Google Scholar 

  6. Liu BN, Fu R, Wang HQ, Li LJ, Yue LZ, Shao ZH, et al. STAT5 phosphorylation in CD34 (+)CD38(−)CD123(+) bone marrow cells of the patients with myelodysplastic syndrome. Zhonghua Xue Ye Xue Za Zhi. 2012;33(6):480–3.

    CAS  PubMed  Google Scholar 

  7. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937–51.

    Article  CAS  PubMed  Google Scholar 

  8. Hwang K, Park CJ, Jang S, Chi HS, Kim DY, Lee JH, et al. Flow cytometric quantification and immunophenotyping of leukemic stem cells in acute myeloid leukemia. Ann Hematol. 2012;91(10):1541–6.

    Article  PubMed  Google Scholar 

  9. De Smet D, Trullemans F, Jochmans K, Renmans W, Smet L, Heylen O, et al. Diagnostic potential of CD34+ cell antigen expression in myelodysplastic syndromes. Am J Clin Pathol. 2012;138(5):732–43.

    Article  PubMed  Google Scholar 

  10. Walter MJ, Shen D, Shao J, Ding L, White BS, et al. Clonal diversity of recurrently mutated genes in myelodysplastic syndromes. Leukemia. 2013;27(6):1275–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Shaffer LG, Ballif BC, Schultz RA. The use of cytogenetic microarrays in myelodysplastic syndrome characterization. Methods Mol Biol. 2013;973:69–85.

    Article  CAS  PubMed  Google Scholar 

  12. Miyazato A, Ueno S, Ohmine K, Ueda M, Yoshida K, Yamashita Y, et al. Identification of myelodysplastic syndrome-specific genes by DNA microarray analysis with purified hematopoietic stem cell fraction. Blood. 2001;98:422–7.

    Article  CAS  PubMed  Google Scholar 

  13. Spinelli E, Caporale R, Buchi F, Masala E, Gozzini A, Sanna A, et al. Distinct signal transduction abnormalities and erythropoietin response in bone marrow hematopoietic cell subpopulations of myelodysplastic syndrome patients. Clin Cancer Res. 2012;18(11):3079–89.

    Article  CAS  PubMed  Google Scholar 

  14. Graf M, Hecht K, Reif S, Pelka-Fleischer R, Pfister K, Schmetzer H. Expression and prognostic value of hemopoietic cytokine receptors in acute myeloid leukemia (AML): implications for future therapeutical strategies. Eur J Haematol. 2004;72:89–106.

    Article  CAS  PubMed  Google Scholar 

  15. Santini V. Treatment of low-risk myelodysplastic syndrome: hematopoietic growth factors erythropoietins and thrombopoietins. Semin Hematol. 2012;49(4):295–303.

    Article  CAS  PubMed  Google Scholar 

  16. Newman K, Maness-Harris L, El-Hemaidi I, Akhtari M. Revisiting use of growth factors in myelodysplastic syndromes. Asian Pac J Cancer Prev. 2012;13(4):1081–91.

    Article  PubMed  Google Scholar 

  17. Park S, Grabar S, Kelaidi C, Beyne-Rauzy O, Picard F, Bardet V, et al. Predictive factors of response and survival in myelodysplastic syndrome treated with erythropoietin and G-CSF: the GFM experience. Blood. 2008;111(2):574–82.

    Article  CAS  PubMed  Google Scholar 

  18. Beekman R, Touw IP. G-CSF and its receptor in myeloid malignancy. Blood. 2010;115(25):5131–6.

    Article  CAS  PubMed  Google Scholar 

  19. Kimura A, Sultana TA. Granulocyte colony-stimulating factor receptors on CD34+ cells in patients with myelodysplastic syndrome (MDS) and MDS-acute myeloid leukemia. Leuk Lymphoma. 2004;45:1995–2000.

    Article  CAS  PubMed  Google Scholar 

  20. Testa U, Riccioni R, Biffoni M, Diverio D, Lo-Coco F, Foà R, et al. Diphtheria toxin fused to variant human interleukin-3 induces cytotoxicity of blasts from patients with acute myeloid leukemia according to the level of interleukin-3 receptor expression. Blood. 2005;106(7):2527–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Cantor AB, Iwasaki H, Arinobu Y, Moran TB, Shigematsu H, Sullivan MR, et al. Antagonism of FOG-1 and GATA factors in fate choice for the mast cell lineage. J Exp Med. 2008;205:611–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Arinobu Y, Mizuno S, Chong Y, Shigematsu H, Iino T, Iwasaki H, et al. Reciprocal activation of GATA-1 and PU.1 marks initial specification of hematopoietic stem cells into myelo erythroid and myelo lymphoid lineages. Cell Stem Cell. 2007;12:416–27.

    Article  Google Scholar 

  23. Ayala RM, Martínez-López J, Albízua E, Diez A, Gilsanz F. Clinical significance of Gata-1, Gata-2, EKLF, and c-MPL expression in acute myeloid leukemia. Am J Hematol. 2009;84:79–86.

    Article  CAS  PubMed  Google Scholar 

  24. Dong HY, Wilkes S, Yang H. CD71 is selectively and ubiquitously expressed at high levels in erythroid precursors of all maturation stages: a comparative immunochemical study with glycophorin A and hemoglobin A. Am J Surg Pathol. 2011;35(5):723–32.

    Article  PubMed  Google Scholar 

  25. Callens C, Coulon S, Naudin J, Radford-Weiss I, Boissel N, Raffoux E, et al. Targeting iron homeostasis induces cellular differentiation and synergizes with differentiating agents in acute myeloid leukemia. J Exp Med. 2010;207(4):731–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Janssen JJ, Deenik W, Smolders KG, van Kuijk BJ, Pouwels W, et al. Residual normal stem cells can be detected in newly diagnosed chronic myeloid leukemia patients by a new flow cytometric approach and predict for optimal response to imatinib. Leukemia. 2012;26(5):977–84.

    Article  CAS  PubMed  Google Scholar 

  27. Yalcintepe L, Frankel AE, Hogge DE. Expression of interleukin-3 receptor subunits on defined subpopulations of acute myeloid leukemia blasts predicts the cytotoxicity of diphtheria toxin interleukin-3 fusion protein against malignant progenitors that engraft in immunodeficient mice. Blood. 2006;108(10):3530–7.

    Article  CAS  PubMed  Google Scholar 

  28. Stein C, Kellner C, Kügler M, Reiff N, Mentz K, Schwenkert M, et al. Novel conjugates of single-chain Fv antibody fragments specific for stem cell antigen CD123 mediate potent death of acute myeloid leukaemia cells. Br J Haematol. 2010;148(6):879–89.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zong Hong Shao.

Additional information

L. J. Li and J. L. Tao contributed equally to this work.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L.J., Tao, J.L., Fu, R. et al. Increased CD34+CD38CD123+ cells in myelodysplastic syndrome displaying malignant features similar to those in AML. Int J Hematol 100, 60–69 (2014). https://doi.org/10.1007/s12185-014-1590-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-014-1590-2

Keywords

Navigation