Skip to main content

Advertisement

Log in

The Impact of Spine Pathology on Posterior Ligamentous Complex Structure and Function

  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Purpose of Review

Spinal ligament is an important component of the spinal column in mitigating biomechanical stress. Particularly the posterior ligamentous complex, which is composed of the ligamentum flavum, interspinous, and supraspinous ligaments. However, research characterizing the biomechanics and role of ligament health in spinal pathology and clinical context are scarce. This article provides a comprehensive review of the implications of spinal pathology on the structure, function, and biomechanical properties of the posterior ligamentous complex.

Recent Findings

Current research characterizing biomechanical properties of the posterior ligamentous complex is primarily composed of cadaveric studies and finite element modeling, and more recently incorporating patient-specific anatomy into finite element models. The ultimate goal of current research is to understand the relative contributions of these ligamentous structures in healthy and pathological spine, and whether preserving ligaments may play an important role in spinal surgical techniques.

Summary

At baseline, posterior ligamentous complex structures account for 30–40% of spinal stability, which is highly dependent on the intrinsic biomechanical properties of each ligament. Biomechanics vary widely with pathology and following rigid surgical fixation techniques and are generally maladaptive. Often secondary to morphological changes in the setting of spinal pathology, but morphological changes in ligament may also serve as a primary pathology. Biomechanical maladaptations of the spinal ligament adversely influence overall spinal column integrity and ultimately predispose to increased risk for surgical failure and poor clinical outcomes. Future research is needed, particularly in living subjects, to better characterize adaptations in ligaments that can provide targets for improved treatment of spinal pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Panjabi MM. A hypothesis of chronic back pain: ligament subfailure injuries lead to muscle control dysfunction. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc. 2006;15:668–76. https://doi.org/10.1007/s00586-005-0925-3. Review article describing a hypothesis of the role of spinal ligament in spinal pathology

    Article  Google Scholar 

  2. Burke JF, Scheer JK, Lau D, Safaee MM, Lui A, Jha S, et al. Failure in adult spinal deformity surgery: a comprehensive review of current rates, mechanisms, and prevention strategies. Spine. 2022;47:1337–50. https://doi.org/10.1097/BRS.0000000000004435.

    Article  PubMed  Google Scholar 

  3. Hart RA, McCarthy I, Ames CP, Shaffrey CI, Hamilton DK, Hostin R. Proximal junctional kyphosis and proximal junctional failure. Neurosurg Clin N Am. 2013;24:213–8. https://doi.org/10.1016/j.nec.2013.01.001.

    Article  PubMed  Google Scholar 

  4. Kim HJ, Iyer S. Proximal junctional kyphosis. J Am Acad Orthop Surg. 2016;24:318–26. https://doi.org/10.5435/JAAOS-D-14-00393.

    Article  PubMed  Google Scholar 

  5. Yagi M, Rahm M, Gaines R, Maziad A, Ross T, Kim HJ, et al. Characterization and surgical outcomes of proximal junctional failure in surgically treated patients with adult spinal deformity. Spine. 2014;39:E607-614. https://doi.org/10.1097/BRS.0000000000000266.

    Article  PubMed  Google Scholar 

  6. Cho SK, Caridi J, Kim JS, Cheung ZB, Gandhi A, Inzana J. Attenuation of proximal junctional kyphosis using sublaminar polyester tension bands: a biomechanical study. World Neurosurg. 2018;120:e1136–42. https://doi.org/10.1016/j.wneu.2018.08.244.

    Article  PubMed  Google Scholar 

  7. Wang W, Sun X, Zhang T, Sun S, Kong C, Ding J, et al. Comparison between topping-off technology and posterior lumbar interbody fusion in the treatment of chronic low back pain: a meta-analysis. Medicine (Baltimore). 2020;99:e18885. https://doi.org/10.1097/MD.0000000000018885. Meta-analysis describing benefit of topping-off techniques in preventing adjacent segment disease post-operatively compared to posterior lumbar interbody fusion alone.

    Article  PubMed  Google Scholar 

  8. Sun X, Chen Z, Sun S, Wang W, Zhang T, Kong C, et al. Dynamic stabilization adjacent to fusion versus posterior lumbar interbody fusion for the treatment of lumbar degenerative disease: a meta-analysis. BioMed Res Int. 2020;2020:9309134. https://doi.org/10.1155/2020/9309134. Systematic review describing benefit of dynamic stabilization techniques at the upper instrumented vertebrae in reducing adjacent segment pathology compared to rigid posterior lumbar interbody fusion alone.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Helgeson MD, Shah SA, Newton PO, Clements DH, Betz RR, Marks MC, et al. Evaluation of proximal junctional kyphosis in adolescent idiopathic scoliosis following pedicle screw, hook, or hybrid instrumentation. Spine. 2010;35:177–81. https://doi.org/10.1097/BRS.0b013e3181c77f8c.

    Article  PubMed  Google Scholar 

  10. Vercoulen TFG, Doodkorte RJP, Roth A, de Bie R, Willems PC. Instrumentation techniques to prevent proximal junctional kyphosis and proximal junctional failure in adult spinal deformity correction: a systematic review of clinical studies. Glob Spine J. 2022;12:1282–96. https://doi.org/10.1177/21925682211034500.

    Article  Google Scholar 

  11. Safaee MM, Deviren V, Dalle Ore C, Scheer JK, Lau D, Osorio JA, et al. Ligament augmentation for prevention of proximal junctional kyphosis and proximal junctional failure in adult spinal deformity. J Neurosurg Spine. 2018;28:512–9. https://doi.org/10.3171/2017.9.SPINE1710.

    Article  PubMed  Google Scholar 

  12. Buell TJ, Bess S, Xu M, Schwab FJ, Lafage V, Ames CP, et al. Optimal tether configurations and preload tensioning to prevent proximal junctional kyphosis: a finite element analysis. J Neurosurg Spine 2019;30(5):574–84. https://doi.org/10.3171/2018.10.SPINE18429.

  13. Safaee MM, Haddad AF, Fury M, Maloney PR, Scheer JK, Lau D, et al. Reduced proximal junctional failure with ligament augmentation in adult spinal deformity: a series of 242 cases with a minimum 1-year follow-up. J Neurosurg Spine. 2021;35:752–60. https://doi.org/10.3171/2021.2.SPINE201987. Retrospective analysis of surgical ligament augmentation in 242 adult spinal deformity patients undergoing long spinal fusion that describes significant reductions in proximal junctional failure at 1-year follow up.

    Article  PubMed  Google Scholar 

  14. Bess S, Harris JE, Turner AWL, LaFage V, Smith JS, Shaffrey CI, et al. The effect of posterior polyester tethers on the biomechanics of proximal junctional kyphosis: a finite element analysis. J Neurosurg Spine. 2017;26:125–33. https://doi.org/10.3171/2016.6.SPINE151477.

    Article  PubMed  Google Scholar 

  15. Wang W, Sun X, Zhang T, Sun S, Kong C, Lu S. Topping-off technology versus posterior lumbar interbody fusion in the treatment of lumbar disc herniation: a meta-analysis. BioMed Res Int. 2020;2020:2953128. https://doi.org/10.1155/2020/2953128.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chang M-Y, Park Y, Ha JW, Zhang H-Y, Lee SH, Hong T-H, et al. Paraspinal lean muscle mass measurement using spine MRI as a predictor of adjacent segment disease after lumbar fusion: a propensity score-matched case-control analysis. AJR Am J Roentgenol. 2019;212(6):1310–17. https://doi.org/10.2214/AJR.18.20441.

  17. Yagi M, Fujita N, Tsuji O, Nagoshi N, Asazuma T, Ishii K, et al. Low bone-mineral density is a significant risk for proximal junctional failure after surgical correction of adult spinal deformity: a propensity score-matched analysis. Spine. 2018;43:485–91. https://doi.org/10.1097/BRS.0000000000002355.

    Article  PubMed  Google Scholar 

  18. Anand N, Agrawal A, Ravinsky R, Khanderhoo B, Kahwaty S, Chung A. The prevalence of proximal junctional kyphosis (PJK) and proximal junctional failure (PJF) in patients undergoing circumferential minimally invasive surgical (cMIS) correction for adult spinal deformity: long-term 2- to 13-year follow-up. Spine Deform. 2021;9:1433–41. https://doi.org/10.1007/s43390-021-00319-1.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kim JS, Cheung ZB, Arvind V, Caridi J, Cho SK-W. Role of posterior ligamentous reinforcement in proximal junctional kyphosis: a cadaveric biomechanical study. Asian Spine J. 2019;13:68–76. https://doi.org/10.31616/asj.2018.0102.

    Article  PubMed  Google Scholar 

  20. Bizdikian AJ, El Rachkidi R. Posterior ligamentous complex injuries of the thoracolumbar spine: importance and surgical implications. Cureus. 2021;13:e18774. https://doi.org/10.7759/cureus.18774. Review article that describes the posterior ligamentous complex as the most important set of ligaments in thoracolumbar spine stability and the gaps in the literature regarding recognition and treatment of posterior ligamentous complex pathology.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Olszewski AD, Yaszemski MJ, White AA. The anatomy of the human lumbar ligamentum flavum. New observations and their surgical importance. Spine. 1996;21:2307–12. https://doi.org/10.1097/00007632-199610150-00001.

    Article  CAS  PubMed  Google Scholar 

  22. Iwanaga J, Ishak B, Saga T, Singla A, Impastato D, Chapman JR, et al. The lumbar ligamentum flavum does not have two layers and is confluent with the interspinous ligament: anatomical study with application to surgical and interventional pain procedures. Clin Anat N Y N. 2020;33:34–40. https://doi.org/10.1002/ca.23437.

    Article  Google Scholar 

  23. Yahia LH, Aktouf N. Lumbar spine ligaments: a quantitative ultrastructure study. J Mater Sci Lett. 1990;9:509–13. https://doi.org/10.1007/BF00725859.

    Article  Google Scholar 

  24. Yahia H, Drouin G, Newman N. Structure-function relationship of human spinal ligaments. Z Mikrosk Anat Forsch. 1990;104:33–45.

    CAS  PubMed  Google Scholar 

  25. Venn G, Mehta MH, Mason RM. Characterisation of collagen from normal and scoliotic human spinal ligament. Biochim Biophys Acta. 1983;757:259–67. https://doi.org/10.1016/0304-4165(83)90116-2.

    Article  CAS  PubMed  Google Scholar 

  26. Iwanaga J, Simonds E, Yilmaz E, Schumacher M, Patel M, Tubbs RS. Anatomical and biomechanical study of the lumbar interspinous ligament. Asian J Neurosurg. 2019;14:1203–6. https://doi.org/10.4103/ajns.AJNS_87_19.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kirby MC, Sikoryn TA, Hukins DW, Aspden RM. Structure and mechanical properties of the longitudinal ligaments and ligamentum flavum of the spine. J Biomed Eng. 1989;11:192–6. https://doi.org/10.1016/0141-5425(89)90139-8.

    Article  CAS  PubMed  Google Scholar 

  28. Rissanen PM. The surgical anatomy and pathology of the supraspinous and interspinous ligaments of the lumbar spine with special reference to ligament ruptures. Acta Orthop Scand Suppl. 1960;46:1–100.

    CAS  PubMed  Google Scholar 

  29. Hukins DW, Kirby MC, Sikoryn TA, Aspden RM, Cox AJ. Comparison of structure, mechanical properties, and functions of lumbar spinal ligaments. Spine. 1990;15:787–95.

    Article  CAS  PubMed  Google Scholar 

  30. Willems J, Jull G, Ng J-F. An in vivo study of the primary and coupled rotations of the thoracic spine. Clin Biomech. 1996;11:311–6. https://doi.org/10.1016/0268-0033(96)00017-4.

    Article  CAS  Google Scholar 

  31. Panjabi MM, White AA. Basic biomechanics of the spine. Neurosurgery. 1980;7:76–93. https://doi.org/10.1227/00006123-198007000-00014. Landmark study on spinal biomechanics, describing the importance of coupling motion of functional spinal units in overall spine function, and how disruption of osteoligamentous stabilizers at a given level has consequences across the spine.

    Article  CAS  PubMed  Google Scholar 

  32. Panjabi MM, Goel VK, Takata K. Physiologic strains in the lumbar spinal ligaments. An in vitro biomechanical study 1981 Volvo Award in Biomechanics. Spine. 1982;7:192–203. https://doi.org/10.1097/00007632-198205000-00003. Biomechanical study of cadaveric lumbar spine ligaments detailing the importance of the posterior ligamentous complex ligaments in flexion.

    Article  CAS  PubMed  Google Scholar 

  33. Yahia H, Newman N. A light and electron microscopic study of spinal ligament innervation. Z Mikrosk Anat Forsch. 1989;103:664–74.

    CAS  PubMed  Google Scholar 

  34. Ambrosetti-Giudici S, Gédet P, Ferguson SJ, Chegini S, Burger J. Viscoelastic properties of the ovine posterior spinal ligaments are strain dependent. Clin Biomech Bristol Avon. 2010;25:97–102. https://doi.org/10.1016/j.clinbiomech.2009.10.017.

    Article  PubMed  Google Scholar 

  35. Lucas SR, Bass CR, Crandall JR, Kent RW, Shen FH, Salzar RS. Viscoelastic and failure properties of spine ligament collagen fascicles. Biomech Model Mechanobiol. 2009;8:487–98. https://doi.org/10.1007/s10237-009-0152-7.

    Article  PubMed  Google Scholar 

  36. Bass CR, Planchak CJ, Salzar RS, Lucas SR, Rafaels KA, Shender BS, et al. The temperature-dependent viscoelasticity of porcine lumbar spine ligaments. Spine. 2007;32:E436-442. https://doi.org/10.1097/BRS.0b013e3180b7fa58.

    Article  PubMed  Google Scholar 

  37. Yahia LH, Audet J, Drouin G. Rheological properties of the human lumbar spine ligaments. J Biomed Eng. 1991;13:399–406. https://doi.org/10.1016/0141-5425(91)90021-x.

    Article  CAS  PubMed  Google Scholar 

  38. Tkaczuk H. Tensile properties of human lumbar longitudinal ligaments. Acta Orthop Scand. 1968;39:1–69. https://doi.org/10.3109/ort.1968.39.suppl-115.01.

    Article  Google Scholar 

  39. Chazal J, Tanguy A, Bourges M, Gaurel G, Escande G, Guillot M, et al. Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction. J Biomech. 1985;18:167–76. https://doi.org/10.1016/0021-9290(85)90202-7.

    Article  CAS  PubMed  Google Scholar 

  40. Dumas GA, Beaudoin L, Drouin G. In situ mechanical behavior of posterior spinal ligaments in the lumbar region. An in vitro study J Biomech. 1987;20:301–10. https://doi.org/10.1016/0021-9290(87)90296-x. In vitro study of posterior thoracolumbar cadaveric spine ligaments that describes loss of roughly 40% of spinal resistance to flexion with resection of the ligamentum flavum, interspinous, and supraspinous ligaments.

    Article  CAS  Google Scholar 

  41. Edwards WT, Hayes WC, Posner I, White AA, Mann RW. Variation of lumbar spine stiffness with load. J Biomech Eng. 1987;109:35–42. https://doi.org/10.1115/1.3138639.

    Article  CAS  PubMed  Google Scholar 

  42. Widmer J, Cornaz F, Scheibler G, Spirig JM, Snedeker JG, Farshad M. Biomechanical contribution of spinal structures to stability of the lumbar spine—novel biomechanical insights. Spine J. 2020;20:1705–16. https://doi.org/10.1016/j.spinee.2020.05.541.

    Article  PubMed  Google Scholar 

  43. Costi JJ, Ledet EH, O’Connell GD. Spine biomechanical testing methodologies: the controversy of consensus vs scientific evidence. JOR Spine. 2021;4(1)e1138. https://doi.org/10.1002/jsp2.1138.

  44. Nachemson AL, Evans JH. Some mechanical properties of the third human lumbar interlaminar ligament (ligamentum flavum). J Biomech. 1968;1:211–20. https://doi.org/10.1016/0021-9290(68)90006-7.

    Article  CAS  PubMed  Google Scholar 

  45. Adams MA, Hutton WC, Stott JR. The resistance to flexion of the lumbar intervertebral joint. Spine. 1980;5:245–53. https://doi.org/10.1097/00007632-198005000-00007.

    Article  CAS  PubMed  Google Scholar 

  46. Pintar FA, Yoganandan N, Myers T, Elhagediab A, Sances A. Biomechanical properties of human lumbar spine ligaments. J Biomech. 1992;25:1351–6. https://doi.org/10.1016/0021-9290(92)90290-h. Only a cadaveric study to our knowledge describes all biomechanical parameters of each ligament using a consistent methodology as derived from 38 cadaveric models, many other studies only describe select biomechanical parameters of select ligaments.

    Article  CAS  PubMed  Google Scholar 

  47. Mihara A, Nishida N, Jiang F, Ohgi J, Imajo Y, Suzuki H, et al. Tensile test of human lumbar ligamentum flavum: age-related changes of stiffness. Appl Sci. 2021;11:3337. https://doi.org/10.3390/app11083337.

    Article  CAS  Google Scholar 

  48. Waters RL, Morris JM. An in vitro study of normal and scoliotic interspinous ligaments 1972:6.

  49. Anderson AL, McIff TE, Asher MA, Burton DC, Glattes RC. The effect of posterior thoracic spine anatomical structures on motion segment flexion stiffness. Spine. 2009;34:441–6. https://doi.org/10.1097/BRS.0b013e318198c62d.

    Article  PubMed  Google Scholar 

  50. Akerblom B. Standing and sitting posture, with special reference to the construction of chairs. Phys Ther. 1949;29:486–486. https://doi.org/10.1093/ptj/29.10.486c.

    Article  Google Scholar 

  51. Panjabi MM, Hausfeld JN, White AA. A biomechanical study of the ligamentous stability of the thoracic spine in man. Acta Orthop Scand. 1981;52:315–26. https://doi.org/10.3109/17453678109050109.

    Article  CAS  PubMed  Google Scholar 

  52. Hartmann F, Janssen C, Böhm S, Hely H, Rommens PM, Gercek E. Biomechanical effect of graded minimal-invasive decompression procedures on lumbar spinal stability. Arch Orthop Trauma Surg. 2012;132:1233–9. https://doi.org/10.1007/s00402-012-1543-2.

    Article  PubMed  Google Scholar 

  53. Myklebust JB, Pintar F, Yoganandan N, Cusick JF, Maiman D, Myers TJ, et al. Tensile strength of spinal ligaments. Spine. 1988;13:526–31.

    Article  CAS  PubMed  Google Scholar 

  54. Dickey JP, Bednar DA, Dumas GA. New insight into the mechanics of the lumbar interspinous ligament. Spine. 1996;21:2720–7. https://doi.org/10.1097/00007632-199612010-00004.

    Article  CAS  PubMed  Google Scholar 

  55. Hindle RJ, Pearcy MJ, Cross A. Mechanical function of the human lumbar interspinous and supraspinous ligaments. J Biomed Eng. 1990;12:340–4. https://doi.org/10.1016/0141-5425(90)90010-K.

    Article  CAS  PubMed  Google Scholar 

  56. Iida T, Abumi K, Kotani Y, Kaneda K. Effects of aging and spinal degeneration on mechanical properties of lumbar supraspinous and interspinous ligaments. Spine J Off J North Am Spine Soc. 2002;2:95–100. https://doi.org/10.1016/s1529-9430(02)00142-0. Study of supraspinous and interspinous ligament derived from patients having undergone spinal surgery at the L4-5 level. Describes how aging and facet joint degeneration lead to maladaptations and diminished mechanical strength of the studied ligaments.

    Article  Google Scholar 

  57. Damm N, Rockenfeller R, Gruber K. Lumbar spinal ligament characteristics extracted from stepwise reduction experiments allow for preciser modeling than literature data. Biomech Model Mechanobiol. 2020;19:893–910. https://doi.org/10.1007/s10237-019-01259-6. Study of cadaveric ligament and finite element modeling which describes how stepwise reduction and study of each ligament individually leads to the generation of more accurate and predictive finite element modeling as compared to models which incorporate biomechanical parameters from larger datasets with mixed testing methodologies.

    Article  PubMed  Google Scholar 

  58. Naserkhaki S, Arjmand N, Shirazi-Adl A, Farahmand F, El-Rich M. Effects of eight different ligament property datasets on biomechanics of a lumbar L4–L5 finite element model. J Biomech. 2018;70:33–42. https://doi.org/10.1016/j.jbiomech.2017.05.003.

    Article  CAS  PubMed  Google Scholar 

  59. Dreischarf M, Zander T, Shirazi-Adl A, Puttlitz CM, Adam CJ, Chen CS, et al. Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together. J Biomech. 2014;47:1757–66. https://doi.org/10.1016/j.jbiomech.2014.04.002.

    Article  CAS  PubMed  Google Scholar 

  60. Zander T, Dreischarf M, Timm A-K, Baumann WW, Schmidt H. Impact of material and morphological parameters on the mechanical response of the lumbar spine–a finite element sensitivity study. J Biomech. 2017;53:185–90. https://doi.org/10.1016/j.jbiomech.2016.12.014. Finite element modeling experiment which describes that biomechanical properties of ligament are more important predictors of spinal function in comparison to biomechanical parameters of vertebral bone.

    Article  PubMed  Google Scholar 

  61. Naserkhaki S, Jaremko JL, El-Rich M. Effects of inter-individual lumbar spine geometry variation on load-sharing: geometrically personalized finite element study. J Biomech. 2016;49:2909–17. https://doi.org/10.1016/j.jbiomech.2016.06.032. Finite element modeling experiment which describes incorporation of patient-specific CT datasets in modeling spinal biomechanics. Additionally, describes that supraspinous and interspinous ligaments exert different levels of resistance to flexion depending on spinal lordosis.

    Article  PubMed  Google Scholar 

  62. Zander T, Rohlmann A, Bergmann G. Analysis of simulated single ligament transection on the mechanical behaviour of a lumbar functional spinal unit. Biomed Tech (Berl). 2004;49:27–32. https://doi.org/10.1515/BMT.2004.006.

    Article  CAS  PubMed  Google Scholar 

  63. Zander T, Rohlmann A, Bergmann G. Influence of ligament stiffness on the mechanical behavior of a functional spinal unit. J Biomech. 2004;37:1107–11. https://doi.org/10.1016/j.jbiomech.2003.11.019.

    Article  PubMed  Google Scholar 

  64. Wang J-L, Parnianpour M, Shirazi-Adl A, Engin AE. Viscoelastic finite-element analysis of a lumbar motion segment in combined compression and sagittal flexion: effect of loading rate. Spine. 2000;25:310–8. https://doi.org/10.1097/00007632-200002010-00009.

    Article  CAS  PubMed  Google Scholar 

  65. Putzer M, Auer S, Malpica W, Suess F, Dendorfer S. A numerical study to determine the effect of ligament stiffness on kinematics of the lumbar spine during flexion. BMC Musculoskelet Disord. 2016;17:95. https://doi.org/10.1186/s12891-016-0942-x. Finite element model of the lumbar spine that describes how alterations in ligament stiffness may predispose ligament to rupture, and place non-physiologic biomechanical loads on adjacent bony and fibromuscular structures.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wu C-C, Jin H-M, Yan Y-Z, Chen J, Wang K, Wang J-L, et al. Biomechanical role of the thoracolumbar ligaments of the posterior ligamentous complex: a finite element study. World Neurosurg. 2018;112:e125-33. https://doi.org/10.1016/j.wneu.2017.12.171. Finite element model which describes how rupture of the supraspinous ligament has the most significant effect on spinal stability in flexion.

    Article  PubMed  Google Scholar 

  67. Crisco JJ, Panjabi MM. The intersegmental and multisegmental muscles of the lumbar spine. A biomechanical model comparing lateral stabilizing potential. Spine. 1991;16:793–9. https://doi.org/10.1097/00007632-199107000-00018.

    Article  PubMed  Google Scholar 

  68. Shirazi-Adl A, Ahmed AM, Shrivastava SC. Mechanical response of a lumbar motion segment in axial torque alone and combined with compression. Spine. 1986;11:914–27. https://doi.org/10.1097/00007632-198611000-00012.

    Article  CAS  PubMed  Google Scholar 

  69. Panjabi MM, Yoldas E, Oxland TR, Crisco JJ. Subfailure injury of the rabbit anterior cruciate ligament. J Orthop Res Off Publ Orthop Res Soc. 1996;14:216–22. https://doi.org/10.1002/jor.1100140208.

    Article  CAS  Google Scholar 

  70. Neumann P, Keller TS, Ekström L, Hansson T. Effect of strain rate and bone mineral on the structural properties of the human anterior longitudinal ligament. Spine. 1994;19:205–11. https://doi.org/10.1097/00007632-199401001-00016.

    Article  CAS  PubMed  Google Scholar 

  71. Kotani Y, Cunningham BW, Cappuccino A, Kaneda K, McAfee PC. The effects of spinal fixation and destabilization on the biomechanical and histologic properties of spinal ligaments: an in vivo study. Spine. 1998;23:672–82. https://doi.org/10.1097/00007632-199803150-00006. Animal model of posterior spinal instrumentation and fusion that describes decreased biomechanical strength of the ligamentum flavum, interspinous and supraspinous ligaments, and resultant stress-shielding effect due to non physiologic mobilization which may serve as an impetus for low back pain.

    Article  CAS  PubMed  Google Scholar 

  72. Kłosiński M, Skrzat J, Walocha J, Mizia E. Contemporary views on the ossification of the ligamenta flava. Ortop Traumatol Rehabil. 2012;14:495–503. https://doi.org/10.5604/15093492.1024716.

    Article  PubMed  Google Scholar 

  73. Hayashi K, Ishidou Y, Yonemori K, Nagamine T, Origuchi N, Maeda S, et al. Expression and localization of bone morphogenetic proteins (BMPs) and BMP receptors in ossification of the ligamentum flavum. Bone. 1997;21:23–30. https://doi.org/10.1016/s8756-3282(97)00080-x.

    Article  CAS  PubMed  Google Scholar 

  74. Tsukamoto N, Maeda T, Miura H, Jingushi S, Hosokawa A, Harimaya K, et al. Repetitive tensile stress to rat caudal vertebrae inducing cartilage formation in the spinal ligaments: a possible role of mechanical stress in the development of ossification of the spinal ligaments. J Neurosurg Spine. 2006;5:234–42. https://doi.org/10.3171/spi.2006.5.3.234. Animal model which describes ossification and morphological alterations of spinal ligaments in response to repeated sub failure injury.

    Article  PubMed  Google Scholar 

  75. Furukawa K-I. Current topics in pharmacological research on bone metabolism: molecular basis of ectopic bone formation induced by mechanical stress. J Pharmacol Sci. 2006;100:201–4. https://doi.org/10.1254/jphs.fmj05004x4.

    Article  CAS  PubMed  Google Scholar 

  76. Yahia H, Drouin G, Maurais G, Garzon S, Rivard CH. Degeneration of the human lumbar spine ligament. An ultrastructural study. Pathol Res Pract. 1989;184:369–75. https://doi.org/10.1016/S0344-0338(89)80031-7.

    Article  CAS  PubMed  Google Scholar 

  77. Yoshiiwa T, Miyazaki M, Notani N, Ishihara T, Kawano M, Tsumura H. Analysis of the relationship between ligamentum flavum thickening and lumbar segmental instability, disc degeneration, and facet joint osteoarthritis in lumbar spinal stenosis. Asian Spine J. 2016;10:1132–40. https://doi.org/10.4184/asj.2016.10.6.1132.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Cornaz F, Widmer J, Farshad-Amacker NA, Spirig JM, Snedeker JG, Farshad M. Intervertebral disc degeneration relates to biomechanical changes of spinal ligaments. Spine J Off J North Am Spine Soc. 2021;21:1399–407. https://doi.org/10.1016/j.spinee.2021.04.016.

    Article  Google Scholar 

  79. Karavelioglu E, Kacar E, Gonul Y, Eroglu M, Boyaci MG, Eroglu S, et al. Ligamentum flavum thickening at lumbar spine is associated with facet joint degeneration: an MRI study. J Back Musculoskelet Rehabil. 2016;29:771–7. https://doi.org/10.3233/BMR-160688.

    Article  PubMed  Google Scholar 

  80. Zirbel SA, Stolworthy DK, Howell LL, Bowden AE. Intervertebral disc degeneration alters lumbar spine segmental stiffness in all modes of loading under a compressive follower load. Spine J. 2013;13:1134–47. https://doi.org/10.1016/j.spinee.2013.02.010.

    Article  PubMed  Google Scholar 

  81. Little JP, Adam CJ. Effects of surgical joint destabilization on load sharing between ligamentous structures in the thoracic spine: a finite element investigation. Clin Biomech Bristol Avon. 2011;26:895–903. https://doi.org/10.1016/j.clinbiomech.2011.05.004.

    Article  CAS  PubMed  Google Scholar 

  82. Lee MJ, Bransford RJ, Bellabarba C, Chapman JR, Cohen AM, Harrington RM, et al. The effect of bilateral laminotomy versus laminectomy on the motion and stiffness of the human lumbar spine: a biomechanical comparison. Spine. 2010;35:1789–93. https://doi.org/10.1097/BRS.0b013e3181c9b8d6. Cadaveric model comparing biomechanics of cadaveric spines post-laminotomy or post-laminectomy in the lumbar spine, which found that preservation of posterior ligaments with bilateral laminotomies results in significantly less hypermobility and less stiffness reduction compared with a full laminectomy.

    Article  PubMed  Google Scholar 

  83. Chen L-H, Lai P-L, Tai C-L, Niu C-C, Fu T-S, Chen W-J. The effect of interspinous ligament integrity on adjacent segment instability after lumbar instrumentation and laminectomy–an experimental study in porcine model. Biomed Mater Eng. 2006;16:261–7. Animal model of posterior instrumentation in the lumbar spine which describes a greater likelihood of adjacent segment instability with resection of posterior ligamentous structures.

    PubMed  Google Scholar 

  84. Korkmaz M, Akgul T, Sariyilmaz K, Ozkunt O, Dikici F, Yazicioglu O. Effectiveness of posterior structures in the development of proximal junctional kyphosis following posterior instrumentation: a biomechanical study in a sheep spine model. Acta Orthop Traumatol Turc. 2019;53:385–9. https://doi.org/10.1016/j.aott.2019.01.003. Animal model of posterior instrumentation in the thoracic spine which describes that interspinosus and supraspinous ligament integrity is more important and effective in preventing proximal junctional kyphosis as compared to facet joint integrity.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gibson JNA, Depreitere B, Pflugmacher R, Schnake KJ, Fielding LC, Alamin TF, et al. Decompression and paraspinous tension band: a novel treatment method for patients with lumbar spinal stenosis and degenerative spondylolisthesis. Spine J Off J North Am Spine Soc. 2015;15:S23-32. https://doi.org/10.1016/j.spinee.2015.01.003. Animal model of posterior instrumentation in the thoracic spine which describes that interspinosus and supraspinous ligament integrity is more important and effective in preventing proximal junctional kyphosis as compared to facet joint integrity.

    Article  Google Scholar 

Download references

Funding

This research received funding from the Scripps Clinical Medical Group Research Award #2021–0223. No other funding was received from agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahar Shahidi.

Ethics declarations

Conflict of Interest

Bradley Anderson and Bahar Shahidi declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, B., Shahidi, B. The Impact of Spine Pathology on Posterior Ligamentous Complex Structure and Function. Curr Rev Musculoskelet Med 16, 616–626 (2023). https://doi.org/10.1007/s12178-023-09873-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-023-09873-9

Keywords

Navigation