Skip to main content

Advertisement

Log in

Smart Technology and Orthopaedic Surgery: Current Concepts Regarding the Impact of Smartphones and Wearable Technology on Our Patients and Practice

  • Hot Topics
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Purpose of Review

While limited to case reports or small case series, emerging evidence advocates the inclusion of smartphone-interfacing mobile platforms and wearable technologies, consisting of internet-powered mobile and wearable devices that interface with smartphones, in the orthopaedic surgery practice. The purpose of this review is to investigate the relevance and impact of this technology in orthopaedic surgery.

Recent Findings

Smartphone-interfacing mobile platforms and wearable technologies are capable of improving the patients’ quality of life as well as the extent of their therapeutic engagement, while promoting the orthopaedic surgeons’ abilities and level of care. Offered advantages include improvements in diagnosis and examination, preoperative templating and planning, and intraoperative assistance, as well as postoperative monitoring and rehabilitation. Supplemental surgical exposure, through haptic feedback and realism of audio and video, may add another perspective to these innovations by simulating the operative environment and potentially adding a virtual tactile feature to the operator’s visual experience.

Summary

Although encouraging in the field of orthopaedic surgery, surgeons should be cautious when using smartphone-interfacing mobile platforms and wearable technologies, given the lack of a current academic governing board certification and clinical practice validation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Goodman SB, Mihalko WM, Anderson PA, Sale K, Bozic KJ. Introduction of new technologies in orthopaedic surgery. JBJS Rev. 2016;4:1.

    Article  Google Scholar 

  2. Mendelsohn CL, Paiement GD. Physical examination of the knee. Prim Care. 1996;23:321–8.

    Article  CAS  PubMed  Google Scholar 

  3. Hanley J, Warren D, Glass N, Tranel D, Karam M, Buckwalter J. Visual interpretation of plain radiographs in orthopaedics using eye-tracking technology. Iowa Orthop J. 2017;37:225–31.

    PubMed  PubMed Central  Google Scholar 

  4. Cho BH, Kaji D, Cheung ZB, Ye IB, Tang R, Ahn A, et al. Automated measurement of lumbar lordosis on radiographs using machine learning and computer vision. Glob Spine J. 2019:219256821986819 First study demonstrating use of combined artificial intelligence and computer vision to rapidly measure a sagittal spinopelvic parameter without manual surgeon input, introducing a potential for improved workflow and increased time for discussion with patients.

  5. Evans RS. Electronic health records: then, now, and in the future. Yearb Med Inform. Thieme Medical Publishers. 2016;25:S48–61.

    Article  Google Scholar 

  6. Desai AS, Dramis A, Kendoff D, Board TN. Critical review of the current practice for computer-assisted navigation in total knee replacement surgery: cost-effectiveness and clinical outcome. Curr Rev Musculoskelet Med. Springer. 2011;4:11–5.

    Article  Google Scholar 

  7. Zhen C, Qiang G. Mobile sensor data collecting system based on smart phone. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). 2014.

  8. Hima Padmaja G, Sreenivasa RG. Industrial remote data acquisition and control system based on embedded ARM9 platform integrated with mobile communication. Int J Sci Eng Res. 2013;4:1413–21.

    Google Scholar 

  9. Clement J. Mobile internet usage worldwide - statistics & facts. statista. 2019.

  10. Center PR. Mobile fact sheet. Pew Res. Cent. Internet, Sci. Technol. 2019.

  11. Reina N. Connected orthopaedics and trauma surgery: new perspectives. Orthop Traumatol Surg Res. 2019;105:S15–22 Excellent perspective article reviewing new and developing health information technology and their role in orthopaedic and trauma surgery.

    Article  PubMed  Google Scholar 

  12. Lenssen AF, van Dam EM, Crijns YH, Verhey M, Geesink RJ, van den Brandt PA, et al. Reproducibility of goniometric measurement of the knee in the in-hospital phase following total knee arthroplasty. BMC Musculoskelet Disord. 2007;8:83.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Keijsers R, Zwerus EL, van Lith DRM, Koenraadt KLM, Goossens P, The B, et al. Validity and reliability of elbow range of motion measurements using digital photographs, movies, and a goniometry smartphone application. J Sports Med. 2018;2018:1–7.

    Article  Google Scholar 

  14. Blonna D, Zarkadas PC, Fitzsimmons JS, O’Driscoll SW. Accuracy and inter-observer reliability of visual estimation compared to clinical goniometry of the elbow. Knee Surgery, Sport Traumatol Arthrosc. 2012;20:1378–85.

    Article  Google Scholar 

  15. Hancock GE, Hepworth T, Wembridge K. Accuracy and reliability of knee goniometry methods. J Exp Orthop. 2018;5:46.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ullucci PA, Tudini F, Moran MF. Reliability of smartphone inclinometry to measure upper cervical range of motion. J Sport Rehabil. 2019;28:1–12.

    Article  Google Scholar 

  17. Rodríguez-Sanz J, Carrasco-Uribarren A, Cabanillas-Barea S, Hidalgo-García C, Fanlo-Mazas P, Lucha-López MO, Tricás-Moreno JM. Validity and reliability of two smartphone applications to measure the lower and upper cervical spine range of motion in subjects with chronic cervical pain. J Back Musculoskelet Rehabil. 2019;32:619–27.

    Article  PubMed  Google Scholar 

  18. Pourahmadi MR, Taghipour M, Jannati E, Mohseni-Bandpei MA, Ebrahimi Takamjani I, Rajabzadeh F. Reliability and validity of an iPhone((R)) application for the measurement of lumbar spine flexion and extension range of motion. PeerJ. United States. 2016;4:e2355.

    Article  Google Scholar 

  19. Qiao J, Xu L, Zhu Z, Zhu F, Liu Z, Qian B, et al. Inter- and intraobserver reliability assessment of the axial trunk rotation: manual versus smartphone-aided measurement tools. BMC Musculoskelet Disord. England. 2014;15:343.

    Article  Google Scholar 

  20. Balg F, Juteau M, Theoret C, Svotelis A, Grenier G. Validity and reliability of the iPhone to measure rib hump in scoliosis. J Pediatr Orthop. United States. 2014;34:774–9.

    Article  Google Scholar 

  21. Jacquot F, Charpentier A, Khelifi S, Gastambide D, Rigal R, Sautet A. Measuring the Cobb angle with the iPhone in kyphoses: a reliability study. Int Orthop. Germany. 2012;36:1655–60.

    Article  Google Scholar 

  22. Castle H, Kozak K, Sidhu A, Khan RJK, Haebich S, Bowden V, et al. Smartphone technology: a reliable and valid measure of knee movement in knee replacement. Int J Rehabil Res Int Zeitschrift fur Rehabil Rev Int Rech Readapt. England. 2018;41:152–8.

    Google Scholar 

  23. Mehta SP, Barker K, Bowman B, Galloway H, Oliashirazi N, Oliashirazi A. Reliability, concurrent validity, and minimal detectable change for iPhone goniometer app in assessing knee range of motion. J Knee Surg. Germany. 2017;30:577–84.

    Article  Google Scholar 

  24. Pereira LC, Rwakabayiza S, Lecureux E, Jolles BM. Reliability of the knee smartphone-application goniometer in the acute orthopaedic setting. J Knee Surg. Germany. 2017;30:223–30.

    Google Scholar 

  25. Milanese S, Gordon S, Buettner P, Flavell C, Ruston S, Coe D, O'Sullivan W, McCormack S. Reliability and concurrent validity of knee angle measurement: smart phone app versus universal goniometer used by experienced and novice clinicians. Man Ther. 2014;19:569–74.

    Article  PubMed  Google Scholar 

  26. Dos Santos RA, Derhon V, Brandalize M, Brandalize D, Rossi LP. Evaluation of knee range of motion: correlation between measurements using a universal goniometer and a smartphone goniometric application. J Bodyw Mov Ther. 2017;21:699–703.

    Article  PubMed  Google Scholar 

  27. Russo RR, Burn MB, Ismaily SK, Gerrie BJ, Han S, Alexander J, Lenherr C, Noble PC, Harris JD, McCulloch PC. Is digital photography an accurate and precise method for measuring range of motion of the hip and knee? J Exp Orthop. 2017;4:29.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Meals CG, Saunders RJ, Desale S, Means KRJ. Viability of hand and wrist photogoniometry. Hand (N Y). United States. 2018;13:301–4.

    Google Scholar 

  29. Wagner ER, Conti Mica M, Shin AY. Smartphone photography utilized to measure wrist range of motion. J Hand Surg Eur Vol. England. 2018;43:187–92.

    Article  Google Scholar 

  30. Zhao JZ, Blazar PE, Mora AN, Earp BE. Range of motion measurements of the fingers via smartphone photography. Hand (N Y). United States. 2019;15:1558944718820955–685.

    Google Scholar 

  31. Lee HH, St Louis K, Fowler JR. Accuracy and reliability of visual inspection and smartphone applications for measuring finger range of motion. Orthopaedics. United States. 2018;41:e217–21.

    Google Scholar 

  32. Meislin MA, Wagner ER, Shin AY. A comparison of elbow range of motion measurements: smartphone-based digital photography versus goniometric measurements. J Hand Surg Am. United States. 2016;41:510–515.e1.

    Article  Google Scholar 

  33. Russo RR, Burn MB, Ismaily SK, Gerrie BJ, Han S, Alexander J, et al. Is digital photography an accurate and precise method for measuring range of motion of the shoulder and elbow? J Orthop Sci. Japan. 2018;23:310–5.

    Article  Google Scholar 

  34. Boissy P, Diop-Fallou S, Lebel K, Bernier M, Balg F, Tousignant-Laflamme Y. Trueness and minimal detectable change of smartphone inclinometer measurements of shoulder range of motion. Telemed J E Health. United States. 2017;23:503–6.

    Article  Google Scholar 

  35. Shin SH, Ro DH, Lee O-S, Oh JH, Kim SH. Within-day reliability of shoulder range of motion measurement with a smartphone. Man Ther. 2012;17:298–304.

    Article  PubMed  Google Scholar 

  36. Mejia-Hernandez K, Chang A, Eardley-Harris N, Jaarsma R, Gill TK, McLean JM. Smartphone applications for the evaluation of pathologic shoulder range of motion and shoulder scores—a comparative study. JSES Open Access. 2018;2:109–14.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Johnson LB, Sumner S, Duong T, Yan P, Bajcsy R, Abresch RT, de Bie E, Han JJ. Validity and reliability of smartphone magnetometer-based goniometer evaluation of shoulder abduction – a pilot study. Man Ther. 2015;20:777–82.

    Article  PubMed  Google Scholar 

  38. Keogh JWL, Cox A, Anderson S, Liew B, Olsen A, Schram B, et al. Reliability and validity of clinically accessible smartphone applications to measure joint range of motion: a systematic review. In: Müller J, editor. PLoS One, vol. 14; 2019. p. e0215806. Systematic review that comprehensively reviews reliability and viability of smartphone applications that measure joint range of motion, including many of the above referenced articles.

    Google Scholar 

  39. Mourcou Q, Fleury A, Diot B, Franco C, Vuillerme N. Mobile phone-based joint angle measurement for functional assessment and rehabilitation of proprioception. Biomed Res Int. 2015;2015:1–15.

    Article  Google Scholar 

  40. Bregou Bourgeois A, Mariani B, Aminian K, Zambelli PY, Newman CJ. Spatio-temporal gait analysis in children with cerebral palsy using, foot-worn inertial sensors. Gait Posture. England. 2014;39:436–42.

    Article  CAS  Google Scholar 

  41. Diebo BG, Shah NV, Pivec R, Naziri Q, Patel A, Post NH, Assi A, Godwin EM, Lafage V, Schwab FJ, Paulino CB. From static spinal alignment to dynamic body balance: utilizing motion analysis in spinal deformity surgery. JBJS Rev. 2018;6:e3.

    Article  PubMed  Google Scholar 

  42. Hausdorff JM, Zemany L, Peng C-K, Goldberger AL. Maturation of gait dynamics: stride-to-stride variability and its temporal organization in children. J Appl Physiol. 1999;86:1040–7.

    Article  CAS  PubMed  Google Scholar 

  43. Agresta C, Brown A. Gait retraining for injured and healthy runners using augmented feedback: a systematic literature review. J Orthop Sport Phys Ther. JOSPT, Inc. JOSPT, 1033 North Fairfax Street, Suite 304, Alexandria, VA 22134-1540 ; 2015;45:576–84.

  44. Bonacci J, Hall M, Saunders N, Vicenzino B. Gait retraining versus foot orthoses for patellofemoral pain: a pilot randomised clinical trial. J Sci Med Sport. Elsevier. 2018;21:457–61.

    Article  Google Scholar 

  45. Willy RW. Innovations and pitfalls in the use of wearable devices in the prevention and rehabilitation of running related injuries. Phys Ther Sport. England. 2018;29:26–33.

    Article  Google Scholar 

  46. Brayne L, Barnes A, Heller B, Wheat J. Using a wireless consumer accelerometer to measure tibial acceleration during running: agreement with a skin-mounted sensor. Sport Eng. 2018;21:487–91.

    Article  Google Scholar 

  47. Koldenhoven RM, Hertel J. Validation of a wearable sensor for measuring running biomechanics. Digit Biomarkers. 2018;2:74–8.

    Article  Google Scholar 

  48. Andersen C, Skovsgaard NM. Reliability and validity of Garmin Forerunner 735XT for measuring running dynamics in-field. Sport. Technol. Thesis. Aalbord Universitet. 2017.

  49. Wahl Y, Düking P, Droszez A, Wahl P, Mester J. Criterion-validity of commercially available physical activity tracker to estimate step count, covered distance and energy expenditure during sports conditions. Front Physiol. 2017;8:725.

    Article  PubMed  PubMed Central  Google Scholar 

  50. He J, Lippmann K, Shakoor N, Ferrigno C, Wimmer MA. Unsupervised gait retraining using a wireless pressure-detecting shoe insole. Gait Posture. 2019;70:408–13.

    Article  PubMed  Google Scholar 

  51. Willy RW, Buchenic L, Rogacki K, Ackerman J, Schmidt A, Willson JD. In-field gait retraining and mobile monitoring to address running biomechanics associated with tibial stress fracture. Scand J Med Sci Sports. 2016;26:197–205.

    Article  CAS  PubMed  Google Scholar 

  52. Matijevich ES, Branscombe LM, Scott LR, Zelik KE. Ground reaction force metrics are not strongly correlated with tibial bone load when running across speeds and slopes: implications for science, sport and wearable tech. PLoS One. United States. 2019;14:e0210000.

    Article  CAS  Google Scholar 

  53. Zhou Q, Zhang H, Lari Z, Liu Z, El-Sheimy N. Design and implementation of foot-mounted inertial sensor based wearable electronic device for game play application. Sensors (Basel). 2016;16:1752.

    Article  Google Scholar 

  54. Takeda R, Lisco G, Fujisawa T, Gastaldi L, Tohyama H, Tadano S. Drift removal for improving the accuracy of gait parameters using wearable sensor systems. Sensors (Basel). 2014;14:23230–47.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Dobson F, Hinman RS, Roos EM, Abbott JH, Stratford P, Davis AM, Buchbinder R, Snyder-Mackler L, Henrotin Y, Thumboo J, Hansen P, Bennell KL. OARSI recommended performance-based tests to assess physical function in people diagnosed with hip or knee osteoarthritis. Osteoarthr Cartil. 2013;21:1042–52.

    Article  CAS  Google Scholar 

  56. Adusumilli G, Joseph SE, Samaan MA, Schultz B, Popovic T, Souza RB, Majumdar S. iPhone sensors in tracking outcome variables of the 30-second chair stand test and stair climb test to evaluate disability: cross-sectional pilot study. JMIR mHealth uHealth. Canada. 2017;5:e166.

    Article  Google Scholar 

  57. Beaupre LA, Lier D, Davies DM, Johnston DBC. The effect of a preoperative exercise and education program on functional recovery, health related quality of life, and health service utilization following primary total knee arthroplasty. J Rheumatol. 2004;31:1166–73.

    PubMed  Google Scholar 

  58. Wynter-Blyth V, Moorthy K. Prehabilitation: preparing patients for surgery. BMJ. British Medical Journal Publishing Group. 2017;358:j3702.

    Article  Google Scholar 

  59. Doiron-Cadrin P, Kairy D, Vendittoli P-A, Lowry V, Poitras S, Desmeules F. Feasibility and preliminary effects of a tele-prehabilitation program and an in-person prehablitation program compared to usual care for total hip or knee arthroplasty candidates: a pilot randomized controlled trial. Disabil Rehabil. England. 2019;42:1–10.

    Google Scholar 

  60. Chughtai M, Shah NV, Sultan AA, Solow M, Tiberi JV, Mehran N, et al. The role of prehabilitation with a telerehabilitation system prior to total knee arthroplasty. Ann Transl Med. AME Publications. 2019;7:68 Highlights prehabilitation remote clinical monitoring/treatment platforms and their role and efficacy for total knee arthroplasty patients, introducing and validating the capabilities of remote/mobile health platforms for continuing patient care outside of the hospital and clinic.

    Article  Google Scholar 

  61. Shah NV, Solow M, Kelly JJ, Aylyarov A, Doran JP, Bloom LR, Akil S, Siddiqui B, Newman JM, Chatterjee D, Pancholi N, Dixit A, Kavousi B, Barbash SE, Urban WP, Neuman DT. Demographics and rates of surgical arthroscopy and postoperative rehabilitative preferences of arthroscopists from the Arthroscopy Association of North America (AANA). J Orthop. 2018;15:591–5.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chen H, Li S, Ruan T, Liu L, Fang L. Is it necessary to perform prehabilitation exercise for patients undergoing total knee arthroplasty: meta-analysis of randomized controlled trials. Phys Sportsmed. 2018;46:36–43.

    Article  PubMed  Google Scholar 

  63. Cabilan CJ, Hines S, Munday J. The effectiveness of prehabilitation or preoperative exercise for surgical patients: a systematic review. JBI database Syst Rev Implement reports. 2015;13:146–87.

    Article  CAS  Google Scholar 

  64. Kataoka T, Oka K, Miyake J, Omori S, Tanaka H, Murase T. 3-Dimensional prebent plate fixation in corrective osteotomy of malunited upper extremity fractures using a real-sized plastic bone model prepared by preoperative computer simulation. J Hand Surg Am. 2013;38:909–19.

    Article  PubMed  Google Scholar 

  65. Murase T, Oka K, Moritomo H, Goto A, Yoshikawa H, Sugamoto K. Three-dimensional corrective osteotomy of malunited fractures of the upper extremity with use of a computer simulation system. J Bone Jt Surgery-American Vol. 2008;90:2375–89.

    Article  Google Scholar 

  66. TraumaCad® Orthopaedic pre-operative planning and templating solution receives FDA clearance on new mobile version. Brainlab. https://www.brainlab.com/press-releases/traumacad-orthopaedic-pre-operative-planning-and-templating-solution-receives-fda-clearance-on-new-mobile-version. Published 2015. Accessed November 1, 2019.

  67. Steinberg EL, Shasha N, Menahem A, Dekel S. Preoperative planning of total hip replacement using the TraumaCadTM system. Arch Orthop Trauma Surg. 2010;130:1429–32.

    Article  PubMed  Google Scholar 

  68. Davila JA, Kransdorf MJ, Duffy GP. Surgical planning of total hip arthroplasty: accuracy of computer-assisted EndoMap software in predicting component size. Skeletal Radiol. 2006;35:390–3.

    Article  PubMed  Google Scholar 

  69. Kosashvili Y, Shasha N, Olschewski E, Safir O, White L, Gross A, et al. Digital versus conventional templating techniques in preoperative planning for total hip arthroplasty. Can J Surg. 2009;52:6–11.

    PubMed  PubMed Central  Google Scholar 

  70. Lafage R, Pesenti S, Lafage V, Schwab FJ. Self-learning computers for surgical planning and prediction of postoperative alignment. Eur Spine J. 2018;27:123–8.

    Article  PubMed  Google Scholar 

  71. Gupta MC, Henry JK, Schwab FJ, Klineberg E, Smith JS, Gum J, et al. Dedicated spine measurement software quantifies key spino-pelvic parameters more reliably than traditional picture archiving and communication systems tools. Spine (Phila Pa 1976). 2016;41:E22–7.

    Article  Google Scholar 

  72. Lafage R, Ferrero E, Henry JK, Challier V, Diebo BG, Liabaud B, Lafage V, Schwab F. Validation of a new computer-assisted tool to measure spino-pelvic parameters. Spine J. 2015;15(12):2493–502.

    Article  PubMed  Google Scholar 

  73. Kim CH, Chung CK, Hong HS, Kim EH, Kim MJ, Park BJ. Validation of a simple computerized tool for measuring spinal and pelvic parameters. J Neurosurg Spine. 2012;16:154–62.

    Article  PubMed  Google Scholar 

  74. Galbusera F, Casaroli G, Bassani T. Artificial intelligence and machine learning in spine research. JOR SPINE. 2019;2:e1044.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lee JB, Kim IS, Lee JJ, Park J-H, Cho CB, Yang SH, Sung JH, Hong JT. Validity of a smartphone application (Sagittalmeter Pro) for the measurement of sagittal balance parameters. World Neurosurg. 2019;126:e8–15.

    Article  PubMed  Google Scholar 

  76. Lonner JH, Klement MR. Robotic-assisted medial unicompartmental knee arthroplasty. J Am Acad Orthop Surg. 2019;27:e207–14.

    Article  PubMed  Google Scholar 

  77. Ogawa H, Hasegawa S, Tsukada S, Matsubara M. A pilot study of augmented reality technology applied to the acetabular cup placement during total hip arthroplasty. J Arthroplasty. United States. 2018;33:1833–7.

    Article  Google Scholar 

  78. Peters FM, Greeff R, Goldstein N, Frey CT. Improving acetabular cup orientation in total hip arthroplasty by using smartphone technology. J Arthroplasty. 2012;27:1324–30.

    Article  PubMed  Google Scholar 

  79. Pongkunakorn A, Chatmaitri S, Diewwattanawiwat K. Use of smartphone to improve acetabular component positioning in total hip athroplasty: a comparative clinical study. J Orthop Surg (Hong Kong). 2019;27:2309499019825578 This study demonstrates the utility and potential that smartphone-based technology can have within the operating room, whereby these authors demonstrated the capability of their smartphone-based application to assist with acetabular cup positioning within the safe zone for total hip arthroplasty.

    Article  Google Scholar 

  80. Kurosaka K, Fukunishi S, Fukui T, Nishio S, Fujihara Y, Okahisa S, Takeda Y, Daimon T, Yoshiya S. Assessment of accuracy and reliability in acetabular cup placement using an iPhone/iPad system. Orthopaedics. United States. 2016;39:e621–6.

    Google Scholar 

  81. Zamani N, Pourkand A, Salas C, Mercer DM, Grow D. A novel approach for assessing and training the drilling skills of orthopaedic surgeons. J Bone Joint Surg Am. 2019;101:e82 This paper introduces technology that can interface well with smart technology and be utilized for intra-operative improvements and smart-technology facing applications.

    Article  PubMed  Google Scholar 

  82. Pourkand A, Salas C, Regalado J, Bhakta K, Tufaro R, Mercer D, Grow D. Objective evaluation of motor skills for orthopaedic residents using a motion tracking drill system: outcomes of an ABOS approved surgical skills training program. Iowa Orthop J. 2016;36:13–9.

    PubMed  PubMed Central  Google Scholar 

  83. Ma L, Zhao Z, Zhang B, Jiang W, Fu L, Zhang X, Liao H. Three-dimensional augmented reality surgical navigation with hybrid optical and electromagnetic tracking for distal intramedullary nail interlocking. Int J Med Robot. England. 2018;14:e1909.

    Article  Google Scholar 

  84. Lee K, Lee KM, Park MS, Lee B, Kwon DG, Chung CY. Measurements of surgeons’ exposure to ionizing radiation dose during intraoperative use of C-arm fluoroscopy. Spine (Phila Pa 1976). 2012;37:1240–4.

    Article  Google Scholar 

  85. Nelson EM, Monazzam SM, Kim KD, Seibert JA, Klineberg EO. Intraoperative fluoroscopy, portable X-ray, and CT: patient and operating room personnel radiation exposure in spinal surgery. Spine J. 2014;14:2985–91.

    Article  PubMed  Google Scholar 

  86. Wei NJ, Dougherty B, Myers A, Badawy SM. Using Google Glass in surgical settings: systematic review. JMIR mHealth uHealth. Canada. 2018;6:e54 An excellent review of the literature and evidence pertaining to the use of Google Glass in surgical settings and applications in training, consultation, patient monitoring, and audiovisual recording.

    Article  Google Scholar 

  87. Hiranaka T, Fujishiro T, Hida Y, Shibata Y, Tsubosaka M, Nakanishi Y, Okimura K, Uemoto H. Augmented reality: the use of the PicoLinker smart glasses improves wire insertion under fluoroscopy. World J Orthop. United States. 2017;8:891–4.

    Article  Google Scholar 

  88. Tsubosaka M, Hiranaka T, Okimura K, Nakanishi Y, Shibata Y, Hida Y, Fujishiro T, Uemoto H. Additional visualization via smart glasses improves accuracy of wire insertion in fracture surgery. Surg Innov. 2017;24:611–5.

    Article  PubMed  Google Scholar 

  89. Chimenti PC, Mitten DJ. Google Glass as an alternative to standard fluoroscopic visualization for percutaneous fixation of hand fractures: a pilot study. Plast Reconstr Surg. United States. 2015;136:328–30.

    Article  CAS  Google Scholar 

  90. Disruptive trend in orthopaedics – the smart implant revolution. Tiger Recruiting. https://orthostreams.com/disruptive-trend-in-orthopaedics-the-smart-implant-revolution. Published 2018. Accessed November 1, 2019.

  91. Ledet EH, D’Lima D, Westerhoff P, Szivek JA, Wachs RA, Bergmann G. Implantable sensor technology: from research to clinical practice. J Am Acad Orthop Surg. 2012;20:383–92.

    Article  PubMed  Google Scholar 

  92. Ledet EH, Liddle B, Kradinova K, Harper S. Smart implants in orthopaedic surgery, improving patient outcomes: a review. Innov Entrep Heal. 2018;5:41–51. This paper introduces the benefits, as well as the current limitations that prevent widespread incorporation, of orthopaedic smart-implants as they relate to patient care.

  93. Meneghini RM, Ziemba-Davis MM, Lovro LR, Ireland PH, Damer BM. Can intraoperative sensors determine the “target” ligament balance? Early outcomes in total knee arthroplasty. J Arthroplasty. 2016;31:2181–7.

    Article  PubMed  Google Scholar 

  94. D’Lima DD, Patil S, Steklov N, Slamin JE, Colwell CW. Tibial forces measured in vivo after total knee arthroplasty. J Arthroplasty. 2006;21:255–62.

    Article  PubMed  Google Scholar 

  95. Ruther C, Ewald H, Mittelmeier W, Fritsche A, Bader R, Kluess D. A novel sensor concept for optimization of loosening diagnostics in total hip replacement. J Biomech Eng. 2011;133:104503.

    Article  PubMed  Google Scholar 

  96. Marschner U, Grätz H, Jettkant B, Ruwisch D, Woldt G, Fischer W-J, Clasbrummel B. Integration of a wireless lock-in measurement of hip prosthesis vibrations for loosening detection. Sensors Actuators A Phys. 2009;156:145–54.

    Article  CAS  Google Scholar 

  97. Burny F, Donkerwolcke M, Moulart F, Bourgois R, Puers R, Van Schuylenbergh K, et al. Concept, design and fabrication of smart orthopaedic implants. Med Eng Phys. 2000;22:469–79.

    Article  CAS  PubMed  Google Scholar 

  98. Premkumar A, Lovecchio FC, Stepan JG, Kahlenberg CA, Blevins JL, Albert TJ, Cross MB. A novel mobile phone text messaging platform improves collection of patient-reported post-operative pain and opioid use following orthopaedic surgery. HSS J. 2019;15:37–41.

    Article  PubMed  Google Scholar 

  99. Delgado DA, Lambert BS, Boutris N, McCulloch PC, Robbins AB, Moreno MR, et al. Validation of digital visual analog scale pain scoring with a traditional paper-based visual analog scale in adults. J Am Acad Orthop Surg Glob Res Rev. United States. 2018;2:e088.

    Google Scholar 

  100. Anthony CA, Volkmar A, Shah AS, Willey M, Karam M, Marsh JL. Communication with orthopaedic trauma patients via an automated mobile phone messaging robot. Telemed e-Health. 2018;24:504–9.

    Article  Google Scholar 

  101. Anthony CA, Lawler EA, Glass NA, McDonald K, Shah AS. Delivery of patient-reported outcome instruments by automated mobile phone text messaging. HAND, vol. 12. Los Angeles: SAGE PublicationsSage CA; 2017. p. 614–21.

    Google Scholar 

  102. Goz V, Anthony C, Pugely A, Lawrence B, Spina N, Brodke D, et al. Software-based postoperative communication with patients undergoing spine surgery. Glob spine J. England. 2019;9:14–7 Study that strongly demonstrates the use of smart software based technology in improving postoperative care via comminucation with spine surgical patients.

    Article  Google Scholar 

  103. Day MA, Anthony CA, Bedard NA, Glass NA, Clark CR, Callaghan JJ, Noiseux NO. Increasing perioperative communication with automated mobile phone messaging in total joint arthroplasty. J Arthroplasty. Churchill Livingstone. 2018;33:19–24.

    Article  Google Scholar 

  104. Anthony CA, Lawler EA, Ward CM, Lin IC, Shah AS. Use of an automated mobile phone messaging robot in postoperative patient monitoring. Telemed e-Health. 2018;24:61–6.

    Article  Google Scholar 

  105. Drolet BC. Text messaging and protected health information. JAMA. American Medical Association. 2017;317:2369–70.

    Article  Google Scholar 

  106. Gulacti U, Lok U, Çelik M. Use of WhatsApp application for orthopaedic consultations in the ED. Am. J. Emerg. Med. 2016:1305–7.

  107. Stahl I, Dreyfuss D, Ofir D, Merom L, Raichel M, Hous N, et al. Reliability of smartphone-based teleradiology for evaluating thoracolumbar spine fractures. Spine J. Elsevier Inc. 2016;17:161–7.

    Google Scholar 

  108. Dos Santos MR, Sado JJ, de Sousa RM, Roriz OR. Reproducibility of Schatzker classification through smartphone applications. Acta Ortop Bras. Brazil. 2016;24:309–11.

    Article  Google Scholar 

  109. De Maio P, White LM, Bleakney R, Menezes RJ, Theodoropoulos J. Diagnostic accuracy of an iPhone DICOM viewer for the interpretation of magnetic resonance imaging of the knee. Clin J Sport Med Off J Can Acad Sport Med. United States. 2014;24:308–14.

    Google Scholar 

  110. Bragg D, Yun M, Bragg H, Choi HA. Intelligent transmission of patient sensor data in wireless hospital networks. AMIA Annu Symp Proc. 2012.

  111. Kohler F, Schmitz-Rode T, Disselhorst-Klug C. Introducing a feedback training system for guided home rehabilitation. J Neuroeng Rehabil. 2010;7:2.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Chughtai M, Piuzzi N, Yakubek G, Khlopas A, Sodhi N, Sultan AA, et al. Use of an app-controlled neuromuscular electrical stimulation system for improved self-management of knee conditions and reduced costs. Surg Technol Int. United States. 2017;31:221–6.

    Google Scholar 

  113. Vaish A, Ahmed S, Shetty A. Remote physiotherapy monitoring using the novel D + R Therapy iPhone application. J Clin Orthop trauma. India. 2017;8:21–4.

    Article  Google Scholar 

  114. Matera G, Boonyasirikool C, Saggini R, Pozzi A, Pegoli L. The new smartphone application for wrist rehabilitation. J hand Surg Asian-Pacific Vol. Singapore. 2016;21:2–7.

    Article  Google Scholar 

  115. Argent R, Slevin P, Bevilacqua A, Neligan M, Daly A, Caulfield B. Wearable sensor-based exercise biofeedback for orthopaedic rehabilitation: a mixed methods user evaluation of a prototype system. Sensors (Basel). Switzerland. 2019:19.

  116. Peek K, Sanson-Fisher R, Mackenzie L, Carey M. Interventions to aid patient adherence to physiotherapist prescribed self-management strategies: a systematic review. Physiotherapy. 2016;102:127–35.

    Article  PubMed  Google Scholar 

  117. Hou J, Yang R, Yang Y, Tang Y, Deng H, Chen Z, Wu Y, Shen H. The effectiveness and safety of utilizing mobile phone-based programs for rehabilitation after lumbar spinal surgery: multicenter, prospective randomized controlled trial. JMIR mHealth uHealth. 2019;7:e10201.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Mr N, Dinesen B, Andersen OK, Madsen NK, Simonsen OH, Hansen J. Developing a telerehabilitation programme for postoperative recovery from knee surgery: specifications and requirements. BMJ Heal Care Informatics. 2019;26:e000022.

    Article  Google Scholar 

  119. Bell K, Onyeukwu C, McClincy M, Allen M, Bechard L, Mukherjee A, Hartman R, Smith C, Lynch A, Irrgang J. Verification of a portable motion tracking system for remote management of physical rehabilitation of the knee. Sensors. 2019;19:1021.

    Article  PubMed Central  Google Scholar 

  120. Ramkumar PN, Haeberle HS, Ramanathan D, Cantrell WA, Navarro SM, Mont MA, Bloomfield M, Patterson BM. Remote patient monitoring using mobile health for total knee arthroplasty: validation of a wearable and machine learning-based surveillance platform. J Arthroplasty. 2019;34:2253–9.

    Article  PubMed  Google Scholar 

  121. Rebolledo BJ, Hammann-Scala J, Leali A, Ranawat AS. Arthroscopy skills development with a surgical simulator: a comparative study in orthopaedic surgery residents. Am J Sports Med. 2015;43:1526–9.

    Article  PubMed  Google Scholar 

  122. Atesok K, Mabrey JD, Jazrawi LM, Egol KA. Surgical simulation in orthopaedic skills training. J Am Acad Orthop Surg. 2012;20:410–22.

    PubMed  Google Scholar 

  123. Chien J-C, Tsai Y-R, Wu C-T, Lee J-D. HoloLens-based AR system with a robust point set registration algorithm. Sensors. 2019;19:3555.

    Article  PubMed Central  Google Scholar 

  124. Condino S, Turini G, Parchi PD, Viglialoro RM, Piolanti N, Gesi M, et al. How to build a patient-specific hybrid simulator for orthopaedic open surgery: benefits and limits of mixed-reality using the Microsoft HoloLens. J Healthc Eng. England. 2018;2018:5435097.

    Google Scholar 

  125. The flight simulator for surgeons. FundamentalVR. https://www.fundamentalsurgery.com. Published 2019. Accessed September 30, 2019.

  126. Rainger Peter. Validation of fundamental surgery, a haptic VR education platform, in conjunction with the British orthopaedic Training Association. Fundamentalsurgery.com. United Kingdom; Jan 29, 2019. https://fundamentalsurgery.com/wp-content/uploads/2019/03/FundamentalVR_ValidationFeb2019_BOTA.pdf.

  127. Precision OS - the most advanced orthopaedic surgery simulation. PrecisionOS. https://www.precisionostech.com. Published 2019. .

  128. Touch the untouchable. DextaRobotics. https://www.dextarobotics.com/en-us. Published 2019. Accessed September 30, 2019.

  129. Wright JG. Revised grades of recommendation for summaries or reviews of orthopaedic surgical studies. J Bone Jt Surg. 2006;88(5):1161–2.

    Article  Google Scholar 

Download references

Code Availability

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil V. Shah.

Ethics declarations

Conflict of Interest

Not applicable.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Institution at which this work has been performed:

Department of orthopaedic Surgery and Rehabilitation Medicine, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, USA

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, N.V., Gold, R., Dar, QA. et al. Smart Technology and Orthopaedic Surgery: Current Concepts Regarding the Impact of Smartphones and Wearable Technology on Our Patients and Practice. Curr Rev Musculoskelet Med 14, 378–391 (2021). https://doi.org/10.1007/s12178-021-09723-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-021-09723-6

Keywords

Navigation