Skip to main content
Log in

Neuromodulation for the Management of Atrial Fibrillation—How to Optimize Patient Selection and the Procedural Approach

  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Neuromodulation for the management of atrial fibrillation (AF) has been a topic of increased interest in recent years; however, there are still challenges regarding which patients would benefit most from these treatments and how we can optimize neuromodulatory procedures to have the greatest effect. We aimed to summarize the current knowledge on optimization of neuromodulatory therapies for AF and discuss the challenges and future directions for research in this area.

Recent Findings

In recent years, the switch from invasive to non-invasive neuromodulatory approaches has made it possible to conduct clinical studies using at-home self-administrated devices to evaluate long-term effects. In this regard, transcutaneous auricular vagus nerve stimulation (ta-VNS) has received more attention, to the extent that clinical studies have determined its beneficial effects on reducing AF burden and atrial alternans in paroxysmal AF patients within 6 months. P-wave alternans, reflecting beat to beat variation in P wave amplitude, has been recently introduced as a predictive biomarker for acute and chronic responses to ta-VNS that can be useful in optimizing patient selection and stimulation parameters.

Summary

Optimizing patient selection and stimulation parameters is critical for maximizing the patient-specific, on-target favorable effects of neuromodulatory treatments while minimizing their off-target effects. Identifying biomarkers that can predict acute and chronic responses to neuromodulatory treatment is critical in achieving optimal neuromodulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Box 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Andrade J, Khairy P, Dobrev D, Nattel S. The clinical profile and pathophysiology of atrial fibrillation: relationships among clinical features, epidemiology, and mechanisms. Circ Res. 2014;114(9):1453–68.

    Article  CAS  PubMed  Google Scholar 

  2. Iwasaki Y-k, Nishida K, Kato T, Nattel S. Atrial fibrillation pathophysiology: implications for management. Circulation. 2011;124(20):2264–74.

    Article  CAS  PubMed  Google Scholar 

  3. Armour JA. Potential clinical relevance of the ‘little brain’ on the mammalian heart. Exp Physiol. 2008;93(2):165–76.

    Article  CAS  PubMed  Google Scholar 

  4. Shivkumar K, Ajijola OA, Anand I, Armour JA, Chen PS, Esler M, et al. Clinical neurocardiology defining the value of neuroscience-based cardiovascular therapeutics. J Physiol. 2016;594(14):3911–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hanna P, Buch E, Stavrakis S, Meyer C, Tompkins JD, Ardell JL, et al. Neuroscientific therapies for atrial fibrillation. Cardiovasc Res. 2021;117(7):1732–45. https://doi.org/10.1093/cvr/cvab172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zafeiropoulos S, Doundoulakis I, Farmakis IT, Miyara S, Giannis D, Giannakoulas G, et al. Autonomic neuromodulation for atrial fibrillation following cardiac surgery: JACC review topic of the week. J Am Coll Cardiol. 2022;79(7):682–94. https://doi.org/10.1016/j.jacc.2021.12.010.

    Article  PubMed  Google Scholar 

  7. Jiang Z, Zhao Y, Tsai WC, Yuan Y, Chinda K, Tan J, et al. Effects of vagal nerve stimulation on ganglionated plexi nerve activity and ventricular rate in ambulatory dogs with persistent atrial fibrillation. JACC Clin Electrophysiol. 2018;4(8):1106–14. https://doi.org/10.1016/j.jacep.2018.05.003.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ardell JL, Cardinal R, Beaumont E, Vermeulen M, Smith FM, Andrew AJ. Chronic spinal cord stimulation modifies intrinsic cardiac synaptic efficacy in the suppression of atrial fibrillation. Auton Neurosci. 2014;186:38–44. https://doi.org/10.1016/j.autneu.2014.09.017.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Stavrakis S, Humphrey MB, Scherlag B, Iftikhar O, Parwani P, Abbas M, et al. Low-level vagus nerve stimulation suppresses post-operative atrial fibrillation and inflammation: a randomized study. JACC Clin Electrophysiol. 2017;3(9):929–38. https://doi.org/10.1016/j.jacep.2017.02.019.

    Article  PubMed  Google Scholar 

  10. Stavrakis S, Humphrey MB, Scherlag BJ, Hu Y, Jackman WM, Nakagawa H, et al. Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation. J Am Coll Cardiol. 2015;65(9):867–75. https://doi.org/10.1016/j.jacc.2014.12.026.

    Article  PubMed  PubMed Central  Google Scholar 

  11. . Stavrakis S, Stoner JA, Humphrey MB, Morris L, Filiberti A, Reynolds JC, et al. TREAT AF (Transcutaneous Electrical Vagus Nerve Stimulation to Suppress Atrial Fibrillation): a randomized clinical trial. JACC Clin Electrophysiol. 2020;6(3):282–91. https://doi.org/10.1016/j.jacep.2019.11.008. This RCT indicates that chronic intermittent right-sided ta-VNS for 1 h daily with a frequency of 20 Hz and an amplitude adjusted individually to 1 mA below the discomfort threshold can significantly reduce AF burden over a 6-month period.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yu L, Scherlag BJ, Li S, Fan Y, Dyer J, Male S, et al. Low-level transcutaneous electrical stimulation of the auricular branch of the vagus nerve: a noninvasive approach to treat the initial phase of atrial fibrillation. Heart Rhythm. 2013;10(3):428–35. https://doi.org/10.1016/j.hrthm.2012.11.019.

    Article  PubMed  Google Scholar 

  13. Yuan Y, Liu X, Wan J, Wong J, Bedwell AA, Persohn SA, et al. Subcutaneous nerve stimulation for rate control in ambulatory dogs with persistent atrial fibrillation. Heart Rhythm. 2019;16(9):1383–91. https://doi.org/10.1016/j.hrthm.2019.05.029.

    Article  PubMed  PubMed Central  Google Scholar 

  14. . Kulkarni K, Singh JP, Parks KA, Katritsis DG, Stavrakis S, Armoundas AA. Low-level tragus stimulation modulates atrial alternans and fibrillation burden in patients with paroxysmal atrial fibrillation. J Am Heart Assoc. 2021;10(12):e020865. https://doi.org/10.1161/JAHA.120.020865. This study introduces P-wave alternans as an ideal biomarker for evaluating treatment response following ta-VNS and thus optimizing patient selection. The early increase in this biomarker with acute ta-VNS is associated with a lower AF burden over 6 months.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kusayama T, Wan J, Yuan Y, Liu X, Li X, Shen C, et al. Effects of subcutaneous nerve stimulation with blindly inserted electrodes on ventricular rate control in a canine model of persistent atrial fibrillation. Heart Rhythm. 2021;18(2):261–70. https://doi.org/10.1016/j.hrthm.2020.09.009.

    Article  PubMed  Google Scholar 

  16. Bettoni M, Zimmermann M. Autonomic tone variations before the onset of paroxysmal atrial fibrillation. Circulation. 2002;105(23):2753–9.

    Article  PubMed  Google Scholar 

  17. Po SS, Scherlag BJ, Yamanashi WS, Edwards J, Zhou J, Wu R, et al. Experimental model for paroxysmal atrial fibrillation arising at the pulmonary vein-atrial junctions. Heart Rhythm. 2006;3(2):201–8. https://doi.org/10.1016/j.hrthm.2005.11.008.

    Article  PubMed  Google Scholar 

  18. Patterson E, Po SS, Scherlag BJ, Lazzara R. Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation. Heart Rhythm. 2005;2(6):624–31. https://doi.org/10.1016/j.hrthm.2005.02.012.

    Article  PubMed  Google Scholar 

  19. Scherlag BJ, Yamanashi W, Patel U, Lazzara R, Jackman WM. Autonomically induced conversion of pulmonary vein focal firing into atrial fibrillation. J Am Coll Cardiol. 2005;45(11):1878–86. https://doi.org/10.1016/j.jacc.2005.01.057.

    Article  PubMed  Google Scholar 

  20. Yu L, Scherlag BJ, Sha Y, Li S, Sharma T, Nakagawa H, et al. Interactions between atrial electrical remodeling and autonomic remodeling: how to break the vicious cycle. Heart Rhythm. 2012;9(5):804–9. https://doi.org/10.1016/j.hrthm.2011.12.023.

    Article  PubMed  Google Scholar 

  21. Shu C, Huang W, Zeng Z, He Y, Luo B, Liu H, et al. Connexin 43 is involved in the sympathetic atrial fibrillation in canine and canine atrial myocytes. Anatol J Cardiol. 2017;18(1):3–9. https://doi.org/10.14744/AnatolJCardiol.2017.7602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu L, Nattel S. Differing sympathetic and vagal effects on atrial fibrillation in dogs: role of refractoriness heterogeneity. Am J Physiol Heart Circ Physiol. 1997;273(2):H805–H16.

    Article  CAS  Google Scholar 

  23. Linz D, Schotten U, Neuberger H-R, Böhm M, Wirth K. Negative tracheal pressure during obstructive respiratory events promotes atrial fibrillation by vagal activation. Heart Rhythm. 2011;8(9):1436–43.

    Article  PubMed  Google Scholar 

  24. Linz D, Mahfoud F, Schotten U, Ukena C, Neuberger H-R, Wirth K, et al. Renal sympathetic denervation suppresses postapneic blood pressure rises and atrial fibrillation in a model for sleep apnea. Hypertension. 2012;60(1):172–8.

    Article  CAS  PubMed  Google Scholar 

  25. Rajendran PS, Hadaya J, Khalsa SS, Yu C, Chang R, Shivkumar K. The vagus nerve in cardiovascular physiology and pathophysiology: from evolutionary insights to clinical medicine. In: Seminars in Cell & Developmental Biology. Elsevier; 2023.

    Google Scholar 

  26. Sha Y, Scherlag BJ, Yu L, Sheng X, Jackman WM, Lazzara R, et al. Low-level right vagal stimulation: anticholinergic and antiadrenergic effects. J Cardiovasc Electrophysiol. 2011;22(10):1147–53. https://doi.org/10.1111/j.1540-8167.2011.02070.x.

    Article  PubMed  Google Scholar 

  27. Shen MJ, Shinohara T, Park HW, Frick K, Ice DS, Choi EK, et al. Continuous low-level vagus nerve stimulation reduces stellate ganglion nerve activity and paroxysmal atrial tachyarrhythmias in ambulatory canines. Circulation. 2011;123(20):2204–12. https://doi.org/10.1161/circulationaha.111.018028.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Stavrakis S, Scherlag BJ, Fan Y, Liu Y, Mao J, Varma V, et al. Inhibition of atrial fibrillation by low-level vagus nerve stimulation: the role of the nitric oxide signaling pathway. J Interv Card Electrophysiol. 2013;36(3):199–208. https://doi.org/10.1007/s10840-012-9752-8.

    Article  PubMed  Google Scholar 

  29. Yu L, Scherlag BJ, Li S, Sheng X, Lu Z, Nakagawa H, et al. Low-level vagosympathetic nerve stimulation inhibits atrial fibrillation inducibility: direct evidence by neural recordings from intrinsic cardiac ganglia. J Cardiovasc Electrophysiol. 2011;22(4):455–63. https://doi.org/10.1111/j.1540-8167.2010.01908.x.

    Article  PubMed  Google Scholar 

  30. Sheng X, Scherlag BJ, Yu L, Li S, Ali R, Zhang Y, et al. Prevention and reversal of atrial fibrillation inducibility and autonomic remodeling by low-level vagosympathetic nerve stimulation. J Am Coll Cardiol. 2011;57(5):563–71.

    Article  PubMed  Google Scholar 

  31. Yuan Y, Jiang Z, He Y, Ding F-B, Ding S-A, Yang Y, et al. Continuous vagal nerve stimulation affects atrial neural remodeling and reduces atrial fibrillation inducibility in rabbits. Cardiovasc Pathol. 2015;24(6):395–8. https://doi.org/10.1016/j.carpath.2015.08.005.

    Article  PubMed  Google Scholar 

  32. Chinda K, Tsai W-C, Chan Y-H, Lin AY-T, Patel J, Zhao Y, et al. Intermittent left cervical vagal nerve stimulation damages the stellate ganglia and reduces the ventricular rate during sustained atrial fibrillation in ambulatory dogs. Heart Rhythm. 2016;13(3):771–80.

    Article  PubMed  Google Scholar 

  33. Butt MF, Albusoda A, Farmer AD, Aziz Q. The anatomical basis for transcutaneous auricular vagus nerve stimulation. J Anat. 2020;236(4):588–611.

    Article  PubMed  Google Scholar 

  34. Frangos E, Ellrich J, Komisaruk BR. Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain Stimul. 2015;8(3):624–36.

    Article  PubMed  Google Scholar 

  35. Chen M, Zhou X, Liu Q, Sheng X, Yu L, Wang Z, et al. Left-sided noninvasive vagus nerve stimulation suppresses atrial fibrillation by upregulating atrial gap junctions in canines. J Cardiovasc Pharmacol. 2015;66(6):593–9. https://doi.org/10.1097/fjc.0000000000000309.

    Article  CAS  PubMed  Google Scholar 

  36. Chen M, Yu L, Liu Q, Wang Z, Wang S, Jiang H, et al. Low level tragus nerve stimulation is a non-invasive approach for anti-atrial fibrillation via preventing the loss of connexins. Int J Cardiol. 2015;179:144–5. https://doi.org/10.1016/j.ijcard.2014.10.114.

    Article  PubMed  Google Scholar 

  37. Yu L, Li X, Huang B, Zhou X, Wang M, Zhou L, et al. Atrial fibrillation in acute obstructive sleep apnea: autonomic nervous mechanism and modulation. J Am Heart Assoc. 2017;6(9):e006264. https://doi.org/10.1161/JAHA.117.006264.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Soltani D, Samimi S, Vasheghani-Farahani A, Shariatpanahi SP, Abdolmaleki P, Madjid AA. Electromagnetic field therapy in cardiovascular diseases: a review of patents, clinically effective devices, and mechanism of therapeutic effects. Trends Cardiovasc Med. 2021; https://doi.org/10.1016/j.tcm.2021.10.006.

  39. Yu L, Dyer JW, Scherlag BJ, Stavrakis S, Sha Y, Sheng X, et al. The use of low-level electromagnetic fields to suppress atrial fibrillation. Heart Rhythm. 2015;12(4):809–17. https://doi.org/10.1016/j.hrthm.2014.12.022.

    Article  PubMed  Google Scholar 

  40. Sohinki D, Thomas J, Scherlag B, Stavrakis S, Yousif A, Po S, et al. Impact of low-level electromagnetic fields on the inducibility of atrial fibrillation in the electrophysiology laboratory. Heart Rhythm O2. 2021;2(3):239–46. https://doi.org/10.1016/j.hroo.2021.04.004.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pather N, Partab P, Singh B, Satyapal KS. Cervico-thoracic ganglion: its clinical implications. Clin Anat. 2006;19(4):323–6. https://doi.org/10.1002/ca.20214.

    Article  CAS  PubMed  Google Scholar 

  42. Choi E-K, Shen MJ, Han S, Kim D, Hwang S, Sayfo S, et al. Intrinsic cardiac nerve activity and paroxysmal atrial tachyarrhythmia in ambulatory dogs. Circulation. 2010;121(24):2615–23.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhou Q, Hu J, Guo Y, Zhang F, Yang X, Zhang L, et al. Effect of the stellate ganglion on atrial fibrillation and atrial electrophysiological properties and its left-right asymmetry in a canine model. Exp Clin Cardiol. 2013;18(1):38.

    PubMed  PubMed Central  Google Scholar 

  44. Connors CW, Craig WY, Buchanan SA, Poltak JM, Gagnon JB, Curry CS. Efficacy and efficiency of perioperative stellate ganglion blocks in cardiac surgery: a pilot study. J Cardiothorac Vasc Anesth. 2018;32(1):e28–30.

    Article  PubMed  Google Scholar 

  45. Wu C-N, Wu X-H, Yu D-N, Ma W-H, Shen C-H, Cao Y. A single-dose of stellate ganglion block for the prevention of postoperative dysrhythmias in patients undergoing thoracoscopic surgery for cancer: a randomised controlled double-blind trial. Eur J Anaesthesiol. 2020;37(4):323–31. https://doi.org/10.1097/eja.0000000000001137.

    Article  PubMed  Google Scholar 

  46. Ouyang R, Li X, Wang R, Zhou Q, Sun Y, Lei E. Effect of ultrasound-guided right stellate ganglion block on perioperative atrial fibrillation in patients undergoing lung lobectomy: a randomized controlled trial. Rev Bras Anestesiol. 2020;70

  47. Abd Allah E, Bakr MA, Abdallah Abdelrahman S, Taha AM, Kamel EZ. Preoperative left stellate ganglion block: does it offer arrhythmia-protection during off-pump CABG surgery? A randomized clinical trial. Egypt J Anaesth. 2020;36(1):194–200.

    Article  Google Scholar 

  48. Leftheriotis D, Flevari P, Kossyvakis C, Katsaras D, Batistaki C, Arvaniti C, et al. Acute effects of unilateral temporary stellate ganglion block on human atrial electrophysiological properties and atrial fibrillation inducibility. Heart Rhythm. 2016;13(11):2111–7. https://doi.org/10.1016/j.hrthm.2016.06.025.

    Article  PubMed  Google Scholar 

  49. Odero A, Bozzani A, De Ferrari GM, Schwartz PJ. Left cardiac sympathetic denervation for the prevention of life-threatening arrhythmias: the surgical supraclavicular approach to cervicothoracic sympathectomy. Heart Rhythm. 2010;7(8):1161–5.

    Article  PubMed  Google Scholar 

  50. Yang X, Zhang L, Liu H, Shao Y, Zhang S. Cardiac sympathetic denervation suppresses atrial fibrillation and blood pressure in a chronic intermittent hypoxia rat model of obstructive sleep apnea. J Am Heart Assoc. 2019;8(4):e010254. https://doi.org/10.1161/JAHA.118.010254.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yuan Y, Jiang Z, Zhao Y, Tsai W-C, Patel J, Chen LS, et al. Long-term intermittent high-amplitude subcutaneous nerve stimulation reduces sympathetic tone in ambulatory dogs. Heart Rhythm. 2018;15(3):451–9. https://doi.org/10.1016/j.hrthm.2017.10.028.

    Article  PubMed  Google Scholar 

  52. Zhao Y, Yuan Y, Tsai W-C, Jiang Z, Tian Z-p, Shen C, et al. Antiarrhythmic effects of stimulating the left dorsal branch of the thoracic nerve in a canine model of paroxysmal atrial tachyarrhythmias. Heart Rhythm. 2018;15(8):1242–51. https://doi.org/10.1016/j.hrthm.2018.04.009.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wan J, Chen M, Yuan Y, Wang Z, Shen C, Fishbein MC, et al. Antiarrhythmic and proarrhythmic effects of subcutaneous nerve stimulation in ambulatory dogs. Heart Rhythm. 2019;16(8):1251–60. https://doi.org/10.1016/j.hrthm.2019.02.027.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Palma J-A, Benarroch EE. Neural control of the heart: recent concepts and clinical correlations. Neurology. 2014;83(3):261–71.

    Article  PubMed  Google Scholar 

  55. Bonica JJ. Autonomic innervation of the viscera in relation to nerve block. Anesthesiology. 1968;29(4):793–813. https://doi.org/10.1097/00000542-196807000-00023.

    Article  CAS  PubMed  Google Scholar 

  56. Sanderson J, Ibrahim B, Waterhouse D, Palmer R. Spinal electrical stimulation for intractable angina—long-term clinical outcome and safety. Eur Heart J. 1994;15(6):810–4.

    Article  CAS  PubMed  Google Scholar 

  57. Eliasson T, Augustinsson L-E, Mannheimer C. Spinal cord stimulation in severe angina pectoris—presentation of current studies, indications and clinical experience. Pain. 1996;65(2-3):169–79.

    Article  CAS  PubMed  Google Scholar 

  58. Olgin JE, Takahashi T, Wilson E, Vereckei A, Steinberg H, Zipes DP. Effects of thoracic spinal cord stimulation on cardiac autonomic regulation of the sinus and atrioventricular nodes. J Cardiovasc Electrophysiol. 2002;13(5):475–81.

    Article  PubMed  Google Scholar 

  59. Yu L, Huang B, He W, Wang S, Liao K, Zhou X, et al. Spinal cord stimulation suppresses focal rapid firing-induced atrial fibrillation by inhibiting atrial ganglionated plexus activity. J Cardiovasc Pharmacol. 2014;64(6):554–9. https://doi.org/10.1097/fjc.0000000000000154.

    Article  CAS  PubMed  Google Scholar 

  60. Wang S, Zhou X, Huang B, Wang Z, Zhou L, Chen M, et al. Spinal cord stimulation suppresses atrial fibrillation by inhibiting autonomic remodeling. Heart Rhythm. 2016;13(1):274–81.

    Article  PubMed  Google Scholar 

  61. Bernstein SA, Wong B, Vasquez C, Rosenberg SP, Rooke R, Kuznekoff LM, et al. Spinal cord stimulation protects against atrial fibrillation induced by tachypacing. Heart Rhythm. 2012;9(9):1426–33.e3. https://doi.org/10.1016/j.hrthm.2012.04.038.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Scheffers IJ, Kroon AA, de Leeuw PW. Carotid baroreflex activation: past, present, and future. Curr Hypertens Rep. 2010;12:61–6.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Carlsten A, Folkow B, Grimby G, Hamberger CA, Thulesius O. Cardiovascular effects of direct stimulation of the carotid sinus nerve in man. Acta Physiol Scand. 1958;44(2):138–45.

    Article  CAS  PubMed  Google Scholar 

  64. Linz D, Mahfoud F, Schotten U, Ukena C, Neuberger HR, Wirth K, et al. Effects of electrical stimulation of carotid baroreflex and renal denervation on atrial electrophysiology. J Cardiovasc Electrophysiol. 2013;24(9):1028–33.

    Article  PubMed  Google Scholar 

  65. Dai M, Bao M, Liao J, Yu L, Tang Y, Huang H, et al. Effects of low-level carotid baroreflex stimulation on atrial electrophysiology. J Interv Card Electrophysiol. 2015;43:111–9.

    Article  CAS  PubMed  Google Scholar 

  66. Liao K, Yu L, Zhou X, Saren G, Wang S, Wang Z, et al. Low-level baroreceptor stimulation suppresses atrial fibrillation by inhibiting ganglionated plexus activity. Can J Cardiol. 2015;31(6):767–74. https://doi.org/10.1016/j.cjca.2015.01.007.

    Article  PubMed  Google Scholar 

  67. Dai M, Bao M, Zhang Y, Yu L, Cao Q, Tang Y, et al. Low-level carotid baroreflex stimulation suppresses atrial fibrillation by inhibiting left stellate ganglion activity in an acute canine model. Heart Rhythm. 2016;13(11):2203–12. https://doi.org/10.1016/j.hrthm.2016.08.021.

    Article  PubMed  Google Scholar 

  68. Linz D, Hohl M, Khoshkish S, Mahfoud F, Ukena C, Neuberger H-R, et al. Low-level but not high-level baroreceptor stimulation inhibits atrial fibrillation in a pig model of sleep apnea. J Cardiovasc Electrophysiol. 2016;27(9):1086–92. https://doi.org/10.1111/jce.13020.

    Article  PubMed  Google Scholar 

  69. Piccirillo G, Ogawa M, Song J, Chong VJ, Joung B, Han S, et al. Power spectral analysis of heart rate variability and autonomic nervous system activity measured directly in healthy dogs and dogs with tachycardia-induced heart failure. Heart Rhythm. 2009;6(4):546–52. https://doi.org/10.1016/j.hrthm.2009.01.006.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kingwell BA, Thompson JM, Kaye DM, McPherson GA, Jennings GL, Esler MD. Heart rate spectral analysis, cardiac norepinephrine spillover, and muscle sympathetic nerve activity during human sympathetic nervous activation and failure. Circulation. 1994;90(1):234–40. https://doi.org/10.1161/01.CIR.90.1.234.

    Article  CAS  PubMed  Google Scholar 

  71. Fatouleh RH, Hammam E, Lundblad LC, Macey PM, McKenzie DK, Henderson LA, et al. Functional and structural changes in the brain associated with the increase in muscle sympathetic nerve activity in obstructive sleep apnoea. NeuroImage: Clin. 2014;6:275–83. https://doi.org/10.1016/j.nicl.2014.08.021.

    Article  PubMed  Google Scholar 

  72. Jiang Z, Zhao Y, Doytchinova A, Kamp NJ, Tsai W-C, Yuan Y, et al. Using skin sympathetic nerve activity to estimate stellate ganglion nerve activity in dogs. Heart Rhythm. 2015;12(6):1324–32. https://doi.org/10.1016/j.hrthm.2015.02.012.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Clancy JA, Mary DA, Witte KK, Greenwood JP, Deuchars SA, Deuchars J. Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimul. 2014;7(6):871–7.

    Article  PubMed  Google Scholar 

  74. Yuan Y, Hassel JL, Doytchinova A, Adams D, Wright KC, Meshberger C, et al. Left cervical vagal nerve stimulation reduces skin sympathetic nerve activity in patients with drug resistant epilepsy. Heart Rhythm. 2017;14(12):1771–8. https://doi.org/10.1016/j.hrthm.2017.07.035.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Whyte S, Barber R, Sample K, Amil F, Farhat K, Stavrakis S. Abstract 13649: differential effect of variable autonomic modulation stimulation parameters on autonomic function. Circulation. 2022;146(Suppl_1):A13649. https://doi.org/10.1161/circ.146.suppl_1.13649.

    Article  Google Scholar 

  76. Geng D, Liu X, Wang Y, Wang J. The effect of transcutaneous auricular vagus nerve stimulation on HRV in healthy young people. PloS One. 2022;17(2):e0263833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hu Y-F, Chen Y-J, Lin Y-J, Chen S-A. Inflammation and the pathogenesis of atrial fibrillation. Nat Rev Cardiol. 2015;12(4):230–43.

    Article  CAS  PubMed  Google Scholar 

  78. Leung M, Abou R, van Rosendael PJ, van der Bijl P, van Wijngaarden SE, Regeer MV, et al. Relation of echocardiographic markers of left atrial fibrosis to atrial fibrillation burden. Am J Cardiol. 2018;122(4):584–91. https://doi.org/10.1016/j.amjcard.2018.04.047.

    Article  PubMed  Google Scholar 

  79. Tran N, Asad Z, Elkholey K, Scherlag BJ, Po SS, Stavrakis S. Autonomic neuromodulation acutely ameliorates left ventricular strain in humans. J Cardiovasc Transl Res. 2019;12(3):221–30.

    Article  PubMed  Google Scholar 

  80. Peuker ET, Filler TJ. The nerve supply of the human auricle. Clin Anat. 2002;15(1):35–7.

    Article  PubMed  Google Scholar 

  81. Napadow V, Edwards RR, Cahalan CM, Mensing G, Greenbaum S, Valovska A, et al. Evoked pain analgesia in chronic pelvic pain patients using respiratory-gated auricular vagal afferent nerve stimulation. Pain Med. 2012;13(6):777–89.

    Article  PubMed  Google Scholar 

  82. Yakunina N, Kim SS, Nam E-C. Optimization of transcutaneous vagus nerve stimulation using functional MRI. Neuromodulation. 2017;20(3):290–300.

    Article  PubMed  Google Scholar 

  83. . Machetanz K, Berelidze L, Guggenberger R, Gharabaghi A. Transcutaneous auricular vagus nerve stimulation and heart rate variability: analysis of parameters and targets. Auton Neurosci. 2021;236:102894. https://doi.org/10.1016/j.autneu.2021.102894. This study indicates that the cymba conchae, fossa triangular, and inner tragus are suitable anatomical targets for ta-VNS, and their stimulation is associated with significant alterations in HRV.

    Article  CAS  PubMed  Google Scholar 

  84. Andreas M, Arzl P, Mitterbauer A, Ballarini NM, Kainz FM, Kocher A, et al. Electrical stimulation of the greater auricular nerve to reduce postoperative atrial fibrillation. Circ Arrhythm Electrophysiol. 2019;12(10):e007711. https://doi.org/10.1161/circep.119.007711.

    Article  PubMed  Google Scholar 

  85. Deuchars SA, Lall VK, Clancy J, Mahadi M, Murray A, Peers L, et al. Mechanisms underpinning sympathetic nervous activity and its modulation using transcutaneous vagus nerve stimulation. Exp Physiol. 2018;103(3):326–31.

    Article  PubMed  Google Scholar 

  86. Chen M, Yu L, Ouyang F, Liu Q, Wang Z, Wang S, et al. The right side or left side of noninvasive transcutaneous vagus nerve stimulation: based on conventional wisdom or scientific evidence? Int J Cardiol. 2015;100(187):44–5.

    Article  Google Scholar 

  87. Byku M, Mann DL. Neuromodulation of the failing heart: lost in translation? JACC Basic Transl Sci. 2016;1(3):95–106. https://doi.org/10.1016/j.jacbts.2016.03.004.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ardell JL, Nier H, Hammer M, Southerland EM, Ardell CL, Beaumont E, et al. Defining the neural fulcrum for chronic vagus nerve stimulation: implications for integrated cardiac control. J Physiol. 2017;595(22):6887–903. https://doi.org/10.1113/JP274678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Krames E, Peckham PH, Rezai AR. Neuromodulation: comprehensive textbook of principles, technologies, and therapies. Academic Press; 2018.

    Google Scholar 

  90. Yang D, Xi Y, Ai T, Wu G, Sun J, Razavi M, et al. Vagal stimulation promotes atrial electrical remodeling induced by rapid atrial pacing in dogs: evidence of a noncholinergic effect. Pacing Clin Electrophysiol. 2011;34(9):1092–9. https://doi.org/10.1111/j.1540-8159.2011.03133.x.

    Article  PubMed  Google Scholar 

  91. Stavrakis S, Scherlag BJ, Fan Y, Liu Y, Liu Q, Mao J, et al. Antiarrhythmic effects of vasostatin-1 in a canine model of atrial fibrillation. J Cardiovasc Electrophysiol. 2012;23(7):771–7. https://doi.org/10.1111/j.1540-8167.2012.02317.x.

    Article  PubMed  Google Scholar 

  92. Groves DA, Brown VJ. Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neurosci Biobehav Rev. 2005;29(3):493–500. https://doi.org/10.1016/j.neubiorev.2005.01.004.

    Article  PubMed  Google Scholar 

  93. Jones JF, Wang Y, Jordan D. Heart rate responses to selective stimulation of cardiac vagal C fibres in anaesthetized cats, rats and rabbits. J Physiol. 1995;489(Pt 1):203–14. https://doi.org/10.1113/jphysiol.1995.sp021042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Evans M, Verma-Ahuja S, Naritoku D, Espinosa J. Intraoperative human vagus nerve compound action potentials. Acta Neurol Scand. 2004;110(4):232–8.

    Article  CAS  PubMed  Google Scholar 

  95. Ellrich J, Lamp S. Peripheral nerve stimulation inhibits nociceptive processing: an electrophysiological study in healthy volunteers. Neuromodulation: Technology at the Neural. Interface. 2005;8(4):225–32. https://doi.org/10.1111/j.1525-1403.2005.00029.x.

    Article  Google Scholar 

  96. Kaniusas E, Kampusch S, Tittgemeyer M, Panetsos F, Gines RF, Papa M, et al. Current directions in the auricular vagus nerve stimulation I–a physiological perspective. Front Neurosci. 2019:854.

  97. Polak T, Markulin F, Ehlis A-C, Langer JB, Ringel TM, Fallgatter AJ. Far field potentials from brain stem after transcutaneous vagus nerve stimulation: optimization of stimulation and recording parameters. J Neural Transm. 2009;116:1237–42.

    Article  PubMed  Google Scholar 

  98. Badran BW, Mithoefer OJ, Summer CE, LaBate NT, Glusman CE, Badran AW, et al. Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate. Brain Stimul. 2018;11(4):699–708. https://doi.org/10.1016/j.brs.2018.04.004.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Farmer AD, Strzelczyk A, Finisguerra A, Gourine AV, Gharabaghi A, Hasan A, et al. International consensus based review and recommendations for minimum reporting standards in research on transcutaneous vagus nerve stimulation (version 2020). Front Hum Neurosci. 2020;14:568051. https://doi.org/10.3389/fnhum.2020.568051.

    Article  CAS  PubMed  Google Scholar 

  100. Stavrakis S, Kulkarni K, Singh JP, Katritsis DG, Armoundas AA. Autonomic modulation of cardiac arrhythmias: methods to assess treatment and outcomes. JACC Clin Electrophysiol. 2020;6(5):467–83. https://doi.org/10.1016/j.jacep.2020.02.014.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Gurel NZ, Gazi AH, Scott KL, Wittbrodt MT, Shah AJ, Vaccarino V, et al. Timing considerations for noninvasive vagal nerve stimulation in clinical studies. AMIA Annu Symp Proc. 2019;2019:1061–70.

    PubMed  Google Scholar 

  102. Cai J, Tang M, Liu H, Ding S, Lu R, Wang W, et al. Effects and mechanisms of cutting upper thoracic sympathetic trunk on ventricular rate in ambulatory canines with persistent atrial fibrillation. Cardiol Res Pract. 2021;2021:8869264. https://doi.org/10.1155/2021/8869264.

    Article  PubMed  PubMed Central  Google Scholar 

  103. . Kulkarni K, Stavrakis S, Elkholey K, Singh JP, Parks KA, Armoundas AA. Microvolt T-wave alternans is modulated by acute low-level tragus stimulation in patients with ischemic cardiomyopathy and heart failure. Front Physiol. 2021;12:707724. https://doi.org/10.3389/fphys.2021.707724. This study shows that T-wave alternans is a predictive biomarker for the acute response to ta-VNS in patients with ischemic cardiomyopathy and heart failure.

    Article  PubMed  PubMed Central  Google Scholar 

  104. . Stavrakis S, Morris L, Takashima AD, Elkholey K, Van Wagoner DR, Ajijola OA. Circulating neuropeptide Y as a biomarker for neuromodulation in atrial fibrillation. JACC Clin Electrophysiol. 2020;6(12):1575–6. https://doi.org/10.1016/j.jacep.2020.08.025. This study indicates that higher baseline neuropeptide Y is associated with a lower AF burden over 6 months, indicating the predictive value of this biomarker for the chronic response to ta-VNS.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Scherschel K, Hedenus K, Jungen C, Lemoine MD, Rubsamen N, Veldkamp MW, et al. Cardiac glial cells release neurotrophic S100B upon catheter-based treatment of atrial fibrillation. Sci Transl Med. 2019;11(493) https://doi.org/10.1126/scitranslmed.aav7770.

  106. Uradu A, Wan J, Doytchinova A, Wright KC, Lin AYT, Chen LS, et al. Skin sympathetic nerve activity precedes the onset and termination of paroxysmal atrial tachycardia and fibrillation. Heart Rhythm. 2017;14(7):964–71. https://doi.org/10.1016/j.hrthm.2017.03.030.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Kluge N, Chan SA, Ardell JL, Smith C. Time-resolved in vivo measurement of neuropeptide dynamics by capacitive immunoprobe in porcine heart. J Vis Exp. 2022;183 https://doi.org/10.3791/63926.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stavros Stavrakis.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani, D., Stavrakis, S. Neuromodulation for the Management of Atrial Fibrillation—How to Optimize Patient Selection and the Procedural Approach. Curr Cardiovasc Risk Rep 17, 91–102 (2023). https://doi.org/10.1007/s12170-023-00718-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12170-023-00718-1

Keywords

Navigation