Skip to main content
Log in

Transthyretin Cardiac Amyloidosis in Older Adults: Optimizing Cardiac Imaging to the Corresponding Diagnostic and Management Goal

  • Elder and Heart Disease (K. Dharmarajan, Section Editor)
  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Transthyretin cardiac amyloidosis is increasingly recognized as an important cause of heart failure in older adults. Many cardiac imaging modalities have evolved to evaluate transthyretin cardiac amyloidosis and include 2D echocardiography with tissue Doppler and speckle-strain imaging, nuclear scintigraphy, cardiac magnetic resonance imaging, and positron emission tomography. The purpose of this review is to highlight the optimal selection of advanced cardiac imaging techniques with corresponding diagnostic goals including raising suspicion, making an early diagnosis, and subtyping transthyretin cardiac amyloid, as well as management goals including assessment of ventricular impairment, prognosticating, and monitoring disease progression. Potential benefits of optimizing cardiac imaging in the elderly patient with transthyretin cardiac amyloidosis may include enhanced and earlier diagnosis and refined long-term management.

Recent Findings

Advances in cardiac imaging techniques are changing diagnostic and management algorithms for transthyretin cardiac amyloidosis.

Summary

With a new era of novel therapeutics, enhanced recognition, and earlier diagnosis approaching, selecting the appropriate non-invasive cardiac imaging modality will be essential for optimal care in the elderly patient with transthyretin cardiac amyloidosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Maurer MS, Hanna M, Grogan M, Dispenzieri A, Witteles R, Drachman B, et al. Genotype and phenotype of transthyretin cardiac amyloidosis: THAOS (Transthyretin Amyloid Outcome Survey). J Am Coll Cardiol. 2016;68(2):161–72. doi:10.1016/j.jacc.2016.03.596.

    Article  CAS  PubMed  Google Scholar 

  2. Rapezzi C, Merlini G, Quarta CC, Riva L, Longhi S, Leone O, et al. Systemic cardiac amyloidoses: disease profiles and clinical courses of the 3 main types. Circulation. 2009;120(13):1203–12. doi:10.1161/CIRCULATIONAHA.108.843334.

    Article  CAS  PubMed  Google Scholar 

  3. Rapezzi C, Lorenzini M, Longhi S, Milandri A, Gagliardi C, Bartolomei I, et al. Cardiac amyloidosis: the great pretender. Heart Fail Rev. 2015;20(2):117–24. doi:10.1007/s10741-015-9480-0.

    Article  CAS  PubMed  Google Scholar 

  4. Castano A, Drachman BM, Judge D, Maurer MS. Natural history and therapy of TTR-cardiac amyloidosis: emerging disease-modifying therapies from organ transplantation to stabilizer and silencer drugs. Heart Fail Rev. 2015;20(2):163–78. doi:10.1007/s10741-014-9462-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wan He DG, Paul Kowal. An Aging World: 2015: United States Census Bureau2016 March 2016.

  6. Writing Group M, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al. Heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–360. doi:10.1161/CIR.0000000000000350.

    Article  Google Scholar 

  7. Brunjes DL, Castano A, Clemons A, Rubin J, Maurer MS. Transthyretin cardiac amyloidosis in older Americans. J Card Fail. 2016;22(12):996–1003. doi:10.1016/j.cardfail.2016.10.008.

    Article  CAS  PubMed  Google Scholar 

  8. González-López E, Gallego-Delgado M, Guzzo-Merello G, de Haro-Del Moral F, Cobo-Marcos M, Robles C et al. 2015 Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. Eur Heart J.

  9. Givens RC, Russo C, Green P, Maurer MS. Comparison of cardiac amyloidosis due to wild-type and V122I transthyretin in older adults referred to an academic medical center. Aging Health. 2013;9(2):229–35. doi:10.2217/ahe.13.10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Narotsky DL, Castano A, Weinsaft JW, Bokhari S, Maurer MS. Wild-type transthyretin cardiac amyloidosis: novel insights from advanced imaging. Can J Cardiol. 2016;32(9):1166 e1–e10. doi:10.1016/j.cjca.2016.05.008.

    Article  Google Scholar 

  11. Cappelli F, Baldasseroni S, Bergesio F, Perlini S, Salinaro F, Padeletti L, et al. Echocardiographic and biohumoral characteristics in patients with AL and TTR amyloidosis at diagnosis. Clin Cardiol. 2015;38(2):69–75. doi:10.1002/clc.22353.

    Article  PubMed  Google Scholar 

  12. Aljaroudi WA, Desai MY, Tang WH, Phelan D, Cerqueira MD, Jaber WA. Role of imaging in the diagnosis and management of patients with cardiac amyloidosis: state of the art review and focus on emerging nuclear techniques. J Nucl Cardiol. 2014;21(2):271–83. doi:10.1007/s12350-013-9800-5.

    Article  PubMed  Google Scholar 

  13. Di Bella G, Pizzino F, Minutoli F, Zito C, Donato R, Dattilo G, et al. The mosaic of the cardiac amyloidosis diagnosis: role of imaging in subtypes and stages of the disease. Eur Heart J Cardiovasc Imaging. 2014;15(12):1307–15. doi:10.1093/ehjci/jeu158.

    Article  PubMed  Google Scholar 

  14. Ruberg FL, Maurer MS, Judge DP, Zeldenrust S, Skinner M, Kim AY, et al. Prospective evaluation of the morbidity and mortality of wild-type and V122I mutant transthyretin amyloid cardiomyopathy: the Transthyretin Amyloidosis Cardiac Study (TRACS). Am Heart J. 2012;164(2):222–8 e1. doi:10.1016/j.ahj.2012.04.015.

    Article  CAS  PubMed  Google Scholar 

  15. Liu D, Niemann M, Hu K, Herrmann S, Stork S, Knop S, et al. Echocardiographic evaluation of systolic and diastolic function in patients with cardiac amyloidosis. Am J Cardiol. 2011;108(4):591–8. doi:10.1016/j.amjcard.2011.03.092.

    Article  PubMed  Google Scholar 

  16. Damy T, Maurer MS, Rapezzi C, Plante-Bordeneuve V, Karayal ON, Mundayat R, et al. Clinical, ECG and echocardiographic clues to the diagnosis of TTR-related cardiomyopathy. Open Heart. 2016;3(1):e000289. doi:10.1136/openhrt-2015-000289.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gertz MA, Comenzo R, Falk RH, Fermand JP, Hazenberg BP, Hawkins PN, et al. Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL): a consensus opinion from the 10th international symposium on amyloid and amyloidosis, Tours, France, 18–22 April 2004. Am J Hematol. 2005;79(4):319–28. doi:10.1002/ajh.20381.

    Article  PubMed  Google Scholar 

  18. Bodez D, Ternacle J, Guellich A, Galat A, Lim P, Radu C, et al. Prognostic value of right ventricular systolic function in cardiac amyloidosis. Amyloid. 2016;23(3):158–67. doi:10.1080/13506129.2016.1194264.

    Article  CAS  PubMed  Google Scholar 

  19. Zhao L, Fang Q. Recent advances in the noninvasive strategies of cardiac amyloidosis. Heart Fail Rev. 2016;21(6):703–21. doi:10.1007/s10741-016-9580-5.

    Article  CAS  PubMed  Google Scholar 

  20. Quarta CC, Solomon SD, Uraizee I, Kruger J, Longhi S, Ferlito M, et al. Left ventricular structure and function in transthyretin-related versus light-chain cardiac amyloidosis. Circulation. 2014;129(18):1840–9. doi:10.1161/CIRCULATIONAHA.113.006242 CIRCULATIONAHA.113.006242.

    Article  PubMed  Google Scholar 

  21. Rocha AM, Ferreira SG, Nacif MS, Ribeiro ML, Freitas MR, Mesquita CT. Speckle tracking and transthyretin amyloid cardiomyopathy. Arq Bras Cardiol. 2017;108(1):21–30. doi:10.5935/abc.20160191.

    PubMed  PubMed Central  Google Scholar 

  22. Lindqvist P, Olofsson BO, Backman C, Suhr O, Waldenstrom A. Pulsed tissue Doppler and strain imaging discloses early signs of infiltrative cardiac disease: a study on patients with familial amyloidotic polyneuropathy. Eur J Echocardiogr. 2006;7(1):22–30. doi:10.1016/j.euje.2005.03.004.

    Article  CAS  PubMed  Google Scholar 

  23. Porciani MC, Lilli A, Perfetto F, Cappelli F, Massimiliano Rao C, Del Pace S, et al. Tissue Doppler and strain imaging: a new tool for early detection of cardiac amyloidosis. Amyloid. 2009;16(2):63–70. doi:10.1080/13506120902879681.

    Article  PubMed  Google Scholar 

  24. Di Bella G, Minutoli F, Pingitore A, Zito C, Mazzeo A, Aquaro GD, et al. Endocardial and epicardial deformations in cardiac amyloidosis and hypertrophic cardiomyopathy. Circ J. 2011;75(5):1200–8.

    Article  PubMed  Google Scholar 

  25. Engvall C, Henein M, Holmgren A, Suhr OB, Morner S, Lindqvist P. Can myocardial strain differentiate hypertrophic from infiltrative etiology of a thickened septum? Echocardiography. 2011;28(4):408–15. doi:10.1111/j.1540-8175.2010.01344.x.

    Article  PubMed  Google Scholar 

  26. Baccouche H, Maunz M, Beck T, Gaa E, Banzhaf M, Knayer U, et al. Differentiating cardiac amyloidosis and hypertrophic cardiomyopathy by use of three-dimensional speckle tracking echocardiography. Echocardiography. 2012;29(6):668–77. doi:10.1111/j.1540-8175.2012.01680.x.

    Article  PubMed  Google Scholar 

  27. Phelan D, Collier P, Thavendiranathan P, Popovic ZB, Hanna M, Plana JC, et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart. 2012;98(19):1442–8. doi:10.1136/heartjnl-2012-302353.

    Article  PubMed  Google Scholar 

  28. Ternacle J, Bodez D, Guellich A, Audureau E, Rappeneau S, Lim P, et al. Causes and consequences of longitudinal LV dysfunction assessed by 2D strain echocardiography in cardiac amyloidosis. JACC Cardiovasc Imaging. 2016;9(2):126–38. doi:10.1016/j.jcmg.2015.05.014.

    Article  PubMed  Google Scholar 

  29. Senapati A, Sperry BW, Grodin JL, Kusunose K, Thavendiranathan P, Jaber W, et al. Prognostic implication of relative regional strain ratio in cardiac amyloidosis. Heart. 2016;102(10):748–54. doi:10.1136/heartjnl-2015-308657.

    Article  PubMed  Google Scholar 

  30. Liu D, Hu K, Niemann M, Herrmann S, Cikes M, Stork S, et al. Effect of combined systolic and diastolic functional parameter assessment for differentiation of cardiac amyloidosis from other causes of concentric left ventricular hypertrophy. Circ Cardiovasc Imaging. 2013;6(6):1066–72. doi:10.1161/CIRCIMAGING.113.000683.

    Article  PubMed  Google Scholar 

  31. Fontana M, Banypersad SM, Treibel TA, Abdel-Gadir A, Maestrini V, Lane T, et al. Differential myocyte responses in patients with cardiac transthyretin amyloidosis and light-chain amyloidosis: a cardiac MR imaging study. Radiology. 2015;277(2):388–97. doi:10.1148/radiol.2015141744.

    Article  PubMed  Google Scholar 

  32. Maceira AM, Joshi J, Prasad SK, Moon JC, Perugini E, Harding I, et al. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation. 2005;111(2):186–93. doi:10.1161/01.CIR.0000152819.97857.9D.

    Article  PubMed  Google Scholar 

  33. Perugini E, Guidalotti PL, Salvi F, Cooke RM, Pettinato C, Riva L, et al. Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J Am Coll Cardiol. 2005;46(6):1076–84. doi:10.1016/j.jacc.2005.05.073.

    Article  PubMed  Google Scholar 

  34. Syed IS, Glockner JF, Feng D, Araoz PA, Martinez MW, Edwards WD, et al. Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis. JACC Cardiovasc Imaging. 2010;3(2):155–64. doi:10.1016/j.jcmg.2009.09.023.

    Article  PubMed  Google Scholar 

  35. Vogelsberg H, Mahrholdt H, Deluigi CC, Yilmaz A, Kispert EM, Greulich S, et al. Cardiovascular magnetic resonance in clinically suspected cardiac amyloidosis: noninvasive imaging compared to endomyocardial biopsy. J Am Coll Cardiol. 2008;51(10):1022–30. doi:10.1016/j.jacc.2007.10.049.

    Article  PubMed  Google Scholar 

  36. White JA, Kim HW, Shah D, Fine N, Kim KY, Wendell DC, et al. CMR imaging with rapid visual T1 assessment predicts mortality in patients suspected of cardiac amyloidosis. JACC Cardiovasc Imaging. 2014;7(2):143–56. doi:10.1016/j.jcmg.2013.09.019.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dungu JN, Valencia O, Pinney JH, Gibbs SD, Rowczenio D, Gilbertson JA, et al. CMR-based differentiation of AL and ATTR cardiac amyloidosis. JACC Cardiovasc Imaging. 2014;7(2):133–42. doi:10.1016/j.jcmg.2013.08.015.

    Article  PubMed  Google Scholar 

  38. Fontana M, Pica S, Reant P, Abdel-Gadir A, Treibel TA, Banypersad SM, et al. Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation. 2015;132(16):1570–9. doi:10.1161/CIRCULATIONAHA.115.016567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhao L, Tian Z, Fang Q. Diagnostic accuracy of cardiovascular magnetic resonance for patients with suspected cardiac amyloidosis: a systematic review and meta-analysis. BMC Cardiovasc Disord. 2016;16:129. doi:10.1186/s12872-016-0311-6.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fontana M, Banypersad SM, Treibel TA, Maestrini V, Sado DM, White SK, et al. Native T1 mapping in transthyretin amyloidosis. JACC Cardiovasc Imaging. 2014;7(2):157–65. doi:10.1016/j.jcmg.2013.10.008.

    Article  PubMed  Google Scholar 

  41. Barison A, Aquaro GD, Pugliese NR, Cappelli F, Chiappino S, Vergaro G, et al. Measurement of myocardial amyloid deposition in systemic amyloidosis: insights from cardiovascular magnetic resonance imaging. J Intern Med. 2015;277(5):605–14. doi:10.1111/joim.12324.

    Article  CAS  PubMed  Google Scholar 

  42. Hongo M, Hirayama J, Fujii T, Yamada H, Okubo S, Kusama S, et al. Early identification of amyloid heart disease by technetium-99m-pyrophosphate scintigraphy: a study with familial amyloid polyneuropathy. Am Heart J. 1987;113(3):654–62.

    Article  CAS  PubMed  Google Scholar 

  43. Kula RW, Engel WK, Line BR. Scanning for soft-tissue amyloid. Lancet. 1977;1(8002):92–3.

    Article  CAS  PubMed  Google Scholar 

  44. Wizenberg TA, Muz J, Sohn YH, Samlowski W, Weissler AM. Value of positive myocardial technetium-99m-pyrophosphate scintigraphy in the noninvasive diagnosis of cardiac amyloidosis. Am Heart J. 1982;103(4 Pt 1):468–73.

    Article  CAS  PubMed  Google Scholar 

  45. Hutt DF, Quigley AM, Page J, Hall ML, Burniston M, Gopaul D, et al. Utility and limitations of 3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy in systemic amyloidosis. Eur Heart J Cardiovasc Imaging. 2014;15(11):1289–98. doi:10.1093/ehjci/jeu107.

    Article  PubMed  Google Scholar 

  46. Rapezzi C, Guidalotti P, Salvi F, Riva L, Perugini E. Usefulness of 99mTc-DPD scintigraphy in cardiac amyloidosis. J Am Coll Cardiol. 2008;51(15):1509–10. doi:10.1016/j.jacc.2007.12.038.

    Article  PubMed  Google Scholar 

  47. Glaudemans AW, van Rheenen RW, van den Berg MP, Noordzij W, Koole M, Blokzijl H, et al. Bone scintigraphy with (99m) technetium-hydroxymethylene diphosphonate allows early diagnosis of cardiac involvement in patients with transthyretin-derived systemic amyloidosis. Amyloid. 2014;21(1):35–44. doi:10.3109/13506129.2013.871250.

    Article  CAS  PubMed  Google Scholar 

  48. Rapezzi C, Quarta CC, Guidalotti PL, Pettinato C, Fanti S, Leone O, et al. Role of (99m)Tc-DPD scintigraphy in diagnosis and prognosis of hereditary transthyretin-related cardiac amyloidosis. JACC Cardiovasc Imaging. 2011;4(6):659–70. doi:10.1016/j.jcmg.2011.03.016.

    Article  PubMed  Google Scholar 

  49. • Bokhari S, Castano A, Pozniakoff T, Deslisle S, Latif F, Maurer MS. (99m)Tc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ Cardiovasc Imaging. 2013;6(2):195–201. doi:10.1161/CIRCIMAGING.112.000132 CIRCIMAGING.112.000132. In this study of 45 patients with ATTR wild-type, ATTR mutant, and AL cardiac amyloidosis, a heart: contralateral ratio greater than 1.5 using Tc99m-PYP nuclear scintigraphy was found to differentiate ATTR cardiac amyloidosis from AL with a sensitivity of 97% and specificity of 100%, with an area under the curve 0.992 (p < 0.0001)

    Article  PubMed  PubMed Central  Google Scholar 

  50. • Castano A, Haq M, Narotsky DL, Goldsmith J, Weinberg RL, Morgenstern R et al. (2016) Multicenter Study of Planar Technetium 99m Pyrophosphate Cardiac Imaging: Predicting Survival for Patients With ATTR Cardiac Amyloidosis. JAMA Cardiol. doi:10.1001/jamacardio.2016.2839. This multicenter retrospective cohort study of 171 participants demonstrated that a Tc99m-PYP heart:contralateral ratio >1.5 was 91% sensitive and 92% specific (area under the curve 0.960) for diagnosing ATTR cardiac amyloidosis compared to AL amyloidosis and non-amyloid heart failure with preserved ejection fraction. Furthermore, among patients with ATTR cardiac amyloidosis, a heart:contralateral ratio of 1.6 or greater was associated with worse survival. Therefore, in this multicenter study, Tc99m-PYP cardiac imaging was diagnostic and prognostic for ATTR cardiac amyloidosis.

  51. Galat A, Rosso J, Guellich A, Van Der Gucht A, Rappeneau S, Bodez D, et al. Usefulness of (99m)Tc-HMDP scintigraphy for the etiologic diagnosis and prognosis of cardiac amyloidosis. Amyloid. 2015;22(4):210–20. doi:10.3109/13506129.2015.1072089.

    Article  CAS  PubMed  Google Scholar 

  52. Abulizi M, Cottereau AS, Guellich A, Vandeventer S, Galat A, Van Der Gucht A, et al. Early-phase myocardial uptake intensity of 99mTc-HMDP vs 99mTc-DPD in patients with hereditary transthyretin-related cardiac amyloidosis. J Nucl Cardiol. 2016; doi:10.1007/s12350-016-0707-9.

    PubMed  Google Scholar 

  53. •• Gillmore JD, Maurer MS, Falk RH, Merlini G, Damy T, Dispenzieri A, et al. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation. 2016;133(24):2404–12. doi:10.1161/CIRCULATIONAHA.116.021612. This international, multicenter study showed that in patients with histologically proven cardiac amyloidosis, abnormally elevated myocardial radiotracer uptake of Tc99m-DPD, -PYP, or -HMDP was >99% sensitive and 86% specific for ATTR cardiac amyloidosis. A myocardial uptake visual score of 2 or 3 without evidence of an abnormal monoclonal protein was found to be 100% specific for ATTR cardiac amyloidosis without the need for biopsy. These findings led to the international consensus that in the absence of an abnormal monoclonal protein, a positive nuclear scan confirms diagnosis without the need for biopsy

    Article  CAS  PubMed  Google Scholar 

  54. Bokhari S, Morgenstern R, Weinberg R, Kinkhabwala M, Panagiotou D, Castano A, et al. Standardization of 99mTechnetium pyrophosphate imaging methodology to diagnose TTR cardiac amyloidosis. J Nucl Cardiol. 2016; doi:10.1007/s12350-016-0610-4.

    Google Scholar 

  55. Antoni G, Lubberink M, Estrada S, Axelsson J, Carlson K, Lindsjo L, et al. In vivo visualization of amyloid deposits in the heart with 11C-PIB and PET. J Nucl Med. 2013;54(2):213–20. doi:10.2967/jnumed.111.102053.

    Article  CAS  PubMed  Google Scholar 

  56. Pilebro B, Arvidsson S, Lindqvist P, Sundstrom T, Westermark P, Antoni G, et al. Positron emission tomography (PET) utilizing Pittsburgh compound B (PIB) for detection of amyloid heart deposits in hereditary transthyretin amyloidosis (ATTR). J Nucl Cardiol. 2016; doi:10.1007/s12350-016-0638-5.

    PubMed  Google Scholar 

  57. Dorbala S, Vangala D, Semer J, Strader C, Bruyere Jr JR, Di Carli MF, et al. Imaging cardiac amyloidosis: a pilot study using (1)(8)F-florbetapir positron emission tomography. Eur J Nucl Med Mol Imaging. 2014;41(9):1652–62. doi:10.1007/s00259-014-2787-6.

    Article  CAS  PubMed  Google Scholar 

  58. Park MA, Padera RF, Belanger A, Dubey S, Hwang DH, Veeranna V, et al. 18F-florbetapir binds specifically to myocardial light chain and transthyretin amyloid deposits: autoradiography study. Circ Cardiovasc Imaging. 2015;8(8) doi:10.1161/CIRCIMAGING.114.002954.

  59. Law WP, Wang WY, Moore PT, Mollee PN, Ng AC. Cardiac amyloid imaging with 18F-florbetaben PET: a pilot study. J Nucl Med. 2016;57(11):1733–9. doi:10.2967/jnumed.115.169870.

    Article  PubMed  Google Scholar 

  60. Trivieri MG, Dweck MR, Abgral R, Robson PM, Karakatsanis NA, Lala A, et al. 18F-sodium fluoride PET/MR for the assessment of cardiac amyloidosis. J Am Coll Cardiol. 2016;68(24):2712–4. doi:10.1016/j.jacc.2016.09.953.

    Article  CAS  PubMed  Google Scholar 

  61. Mallik A, Drzezga A, Minoshima S. Clinical amyloid imaging. Semin Nucl Med. 2017;47(1):31–43. doi:10.1053/j.semnuclmed.2016.09.005.

    Article  PubMed  Google Scholar 

  62. Coelho T, Merlini G, Bulawa CE, Fleming JA, Judge DP, Kelly JW, et al. Mechanism of action and clinical application of tafamidis in hereditary transthyretin amyloidosis. Neurol Ther. 2016;5(1):1–25. doi:10.1007/s40120-016-0040-x.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Deux JF, Damy T, Rahmouni A, Mayer J, Plante-Bordeneuve V. Noninvasive detection of cardiac involvement in patients with hereditary transthyretin associated amyloidosis using cardiac magnetic resonance imaging: a prospective study. Amyloid. 2014;21(4):246–55. doi:10.3109/13506129.2014.956924.

    Article  PubMed  Google Scholar 

  64. Haq M, Pawar S, Berk JL, Miller EJ, Ruberg FL. Can 99m-Tc-pyrophosphate aid in early detection of cardiac involvement in asymptomatic variant TTR amyloidosis? JACC Cardiovasc Imaging. 2016; doi:10.1016/j.jcmg.2016.06.003.

    PubMed  Google Scholar 

  65. Castano A, Haq M, Narotsky DL, Goldsmith J, Weinberg RL, Morgenstern R, et al. Multicenter study of planar technetium 99m pyrophosphate cardiac imaging: predicting survival for patients with ATTR cardiac amyloidosis. JAMA Cardiol. 2016;1(8):880–9. doi:10.1001/jamacardio.2016.2839.

    Article  PubMed  Google Scholar 

  66. Van Der Gucht A, Galat A, Rosso J, Guellich A, Garot J, Bodez D, et al. [18F]-NaF PET/CT imaging in cardiac amyloidosis. J Nucl Cardiol. 2016;23(4):846–9. doi:10.1007/s12350-015-0287-0.

    Article  PubMed  Google Scholar 

  67. Morgenstern R, Yeh R, Castano A, Maurer MS, Bokhari S. 18Fluorine sodium fluoride positron emission tomography, a potential biomarker of transthyretin cardiac amyloidosis. J Nucl Cardiol. 2017; doi:10.1007/s12350-017-0799-x.

    PubMed  Google Scholar 

  68. Gagliardi C, Tabacchi E, Bonfiglioli R, Diodato S, Nanni C, Guidalotti P, et al. Does the etiology of cardiac amyloidosis determine the myocardial uptake of [18F]-NaF PET/CT? J Nucl Cardiol. 2016; doi:10.1007/s12350-016-0457-8.

    PubMed  Google Scholar 

  69. Osborne DR, Acuff SN, Stuckey A, Wall JS. A routine PET/CT protocol with streamlined calculations for assessing cardiac amyloidosis using (18)F-florbetapir. Front Cardiovasc Med. 2015;2:23. doi:10.3389/fcvm.2015.00023.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kristen AV, aus dem Siepen F, Scherer K, Kammerer R, Andre F, Buss SJ et al.Comparison of different types of cardiac amyloidosis by cardiac magnetic resonance imaging. Amyloid 2015;22(2):132–141. doi:10.3109/13506129.2015.1020153.

  71. Pinney JH, Whelan CJ, Petrie A, Dungu J, Banypersad SM, Sattianayagam P, et al. Senile systemic amyloidosis: clinical features at presentation and outcome. J Am Heart Assoc. 2013;2(2):e000098. doi:10.1161/JAHA.113.000098.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Minamisawa M, Koyama J, Sekijima Y, Ikeda S, Kozuka A, Ebisawa S, et al. Comparison of the standard and speckle tracking echocardiographic features of wild-type and mutated transthyretin cardiac amyloidoses. Eur Heart J Cardiovasc Imaging. 2016;17(4):402–10. doi:10.1093/ehjci/jew003.

    Article  PubMed  Google Scholar 

  73. Kristen AV, Haufe S, Schonland SO, Hegenbart U, Schnabel PA, Rocken C, et al. Skeletal scintigraphy indicates disease severity of cardiac involvement in patients with senile systemic amyloidosis. Int J Cardiol. 2013;164(2):179–84. doi:10.1016/j.ijcard.2011.06.123.

    Article  PubMed  Google Scholar 

  74. Kristen AV, Scherer K, Buss S, aus dem Siepen F, Haufe S, Bauer R et al. Noninvasive risk stratification of patients with transthyretin amyloidosis. JACC Cardiovasc Imaging. 2014;7(5):502–510. doi:10.1016/j.jcmg.2014.03.002.

  75. Tendler A, Helmke S, Teruya S, Alvarez J, Maurer MS. The myocardial contraction fraction is superior to ejection fraction in predicting survival in patients with AL cardiac amyloidosis. Amyloid. 2015;22(1):61–6. doi:10.3109/13506129.2014.994202.

    Article  CAS  PubMed  Google Scholar 

  76. Grogan M, Scott CG, Kyle RA, Zeldenrust SR, Gertz MA, Lin G, et al. Natural history of wild-type transthyretin cardiac amyloidosis and risk stratification using a novel staging system. J Am Coll Cardiol. 2016;68(10):1014–20. doi:10.1016/j.jacc.2016.06.033.

    Article  PubMed  Google Scholar 

  77. Klein AL, Hatle LK, Taliercio CP, Oh JK, Kyle RA, Gertz MA, et al. Prognostic significance of Doppler measures of diastolic function in cardiac amyloidosis. A Doppler echocardiography study. Circulation. 1991;83(3):808–16.

    Article  CAS  PubMed  Google Scholar 

  78. Tei C, Dujardin KS, Hodge DO, Kyle RA, Tajik AJ, Seward JB. Doppler index combining systolic and diastolic myocardial performance: clinical value in cardiac amyloidosis. J Am Coll Cardiol. 1996;28(3):658–64.

    Article  CAS  PubMed  Google Scholar 

  79. Raina S, Lensing SY, Nairooz RS, Pothineni NV, Hakeem A, Bhatti S, et al. Prognostic value of late gadolinium enhancement CMR in systemic amyloidosis. JACC Cardiovasc Imaging. 2016;9(11):1267–77. doi:10.1016/j.jcmg.2016.01.036.

    Article  PubMed  Google Scholar 

  80. Wassmuth R, Abdel-Aty H, Bohl S, Schulz-Menger J. Prognostic impact of T2-weighted CMR imaging for cardiac amyloidosis. Eur Radiol. 2011;21(8):1643–50. doi:10.1007/s00330-011-2109-3.

    Article  PubMed  Google Scholar 

  81. Hutt DF, Fontana M, Burniston M, Quigley AM, Petrie A, Ross JC, et al. Prognostic utility of the Perugini grading of 99mTc-DPD scintigraphy in transthyretin (ATTR) amyloidosis and its relationship with skeletal muscle and soft tissue amyloid. Eur Heart J Cardiovasc Imaging. 2017; doi:10.1093/ehjci/jew325.

    PubMed  Google Scholar 

  82. Maurer MS, Grogan DR, Judge DP, Mundayat R, Packman J, Lombardo I, et al. Tafamidis in transthyretin amyloid cardiomyopathy: effects on transthyretin stabilization and clinical outcomes. Circ Heart Fail. 2015;8(3):519–26. doi:10.1161/CIRCHEARTFAILURE.113.000890.

    Article  PubMed  Google Scholar 

  83. Hawkins PN, Ando Y, Dispenzeri A, Gonzalez-Duarte A, Adams D, Suhr OB. Evolving landscape in the management of transthyretin amyloidosis. Ann Med. 2015;47(8):625–38. doi:10.3109/07853890.2015.1068949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Castaño.

Ethics declarations

Conflict of Interest

Dr. Adam Castaño received salary support from the ACC/Merck Fellowship in Cardiovascular Disease and the New York Academy of Medicine Glorney-Raisbeck Fellowship in Cardiovascular Disease.

Dr. Manson declares no conflicts of interests.

Dr. Mathew S. Maurer receives funding from an NIH K24 AG036778 Midcareer Mentoring Award in Geriatric Cardiology and his institution receives funding for research and serving on advisory boards and DSMBs from Pfizer Inc., Alnylam Pharmaceuticals Inc., ISIS Pharmaceuticals, and Prothena Inc.

Dr. Bokhari declares no conflicts of interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Elder and Heart Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castaño, A., Manson, D.K., Maurer, M.S. et al. Transthyretin Cardiac Amyloidosis in Older Adults: Optimizing Cardiac Imaging to the Corresponding Diagnostic and Management Goal. Curr Cardiovasc Risk Rep 11, 17 (2017). https://doi.org/10.1007/s12170-017-0541-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12170-017-0541-x

Keywords

Navigation