Skip to main content

Advertisement

Log in

Recent Advances in Terahertz Time-Domain Spectroscopy and Imaging Techniques for Automation in Agriculture and Food Sector

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

Automated non-destructive testing in the agricultural and food sector gathered great interest because of higher production, lower wastage, food quality, food safety, time-saving, lower workforce requirements, and food security. There is a demand for faster, accurate, reliable, and simplified technology to classify the sound quality of food and agricultural products. Terahertz (THz) waves in a frequency interval of 0.1 to 10 THz and their unique properties such as low-energy, penetrating, rapid, and non-invasive technology encouraged the extensive application in the food and agriculture sector as a non-destructive and cost-effective method. The great application of THz imaging is due to the potentials of extraction of spectra from amplitude and phase information using THz spectroscopy. In this review, the principle and instrumentation of THz spectroscopy are discussed and focuses on the recent advances in terahertz technology used in water monitoring, soil sensing, classification of seeds, varieties/origin discrimination, residue detection, microbes, toxin and food spoilage detection, food adulteration identification, and foreign particles inspection in the food and agriculture sector.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adebayo SE, Hashim N, Abdan K, Hanafi M (2016) Application and potential of backscattering imaging techniques in agricultural and food processing–a review. J Food Eng 169:155–164

    Google Scholar 

  • Afsah-Hejri L, Akbari E, Toudeshki A, Homayouni T, Alizadeh A, Ehsani R (2020) Terahertz spectroscopy and imaging: a review on agricultural applications. Comput Electron Agric 177:105628. https://doi.org/10.1016/j.compag.2020.105628

  • Ajito K, Ueno Y, Kim JY, Sumikama T (2018) Capturing the freeze-drying dynamics of NaCl nanoparticles using THz spectroscopy. J Am Chem Soc 140(42):13793–13797

    PubMed  CAS  Google Scholar 

  • Akiyama K, Horita K, Sakamoto T, Satozono H, Takahashi H, Goda Y (2019) Monitoring the progress of lactic acid fermentation in yogurt manufacturing using terahertz time-domain–attenuated total-reflection spectroscopy. J Infrared Millim Terahertz Waves 40(11):1160–1167

    CAS  Google Scholar 

  • Khaliduzzaman A, Konagaya K, Suzuki T, Kashimori A, Kondo N, Ogawa Y (2020) A nondestructive eggshell thickness measurement technique using terahertz waves. Sci Rep 10(1):1052. https://doi.org/10.1038/s41598-020-57774-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arikawa T, Nagai M, Tanaka K (2008) Characterizing hydration state in solution using terahertz time-domain attenuated total reflection spectroscopy. Chem Phys Lett 457(1–3):12–17

    CAS  Google Scholar 

  • Awano T, Takahashi T (2009) Coherent THz wave induced excitation in superionic conductors. J Phys Conf Ser 148:012–040

    Google Scholar 

  • Bernier M, Garet F, Kato E, Blampey B, Coutaz JL (2018) Comparative study of material parameter extraction using terahertz time-domain spectroscopy in transmission and in reflection. J Infrared Millim Terahertz Waves 39(4):349–366

    CAS  Google Scholar 

  • Beruete Díaz M, Jáuregui López I (2020) Terahertz sensing based on metasurfaces. Adv Opt Mater 8:1900721

    Google Scholar 

  • Cao B, Li H, Fan M, Wang W, Wang M (2018) Determination of pesticides in a flour substrate by chemometric methods using terahertz spectroscopy. Anal Methods 10(42):5097–5104

    CAS  Google Scholar 

  • Chandra I, Gulati R, Sharma HS (1997) Advances in Gunn diode technology. IETE Tech Rev 14(6):443–449

    Google Scholar 

  • Cheng R, Xu L, Yu X, Zou L, Shen Y, Deng X (2020) High-sensitivity biosensor for identification of protein based on terahertz fano resonance metasurfaces. Opt Commun 125850

  • Cunnell R, Luce T, Collins J, Rungsawang R, Freeman JR, Beere HE, Ritchie DA, Gladden LF, Johns ML, Zeitler JA (2009) Quantification of emulsified water content in oil using a terahertz quantum cascade laser. In 2009 34th International Conference on Infrared, Millimeter, and Terahertz Waves. IEEE. 1–2.

  • Downes LA, MacKellar AR, Adams CS, Weatherill KJ (2019) High-speed THz imaging for production line monitoring. In 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE 1–2.

  • Du CJ, Sun DW (2004) Recent developments in the applications of image processing techniques for food quality evaluation. Trends Food Sci Technol 15(5):230–249

    CAS  Google Scholar 

  • Du C, Zhang X, Zhang Z (2019) Quantitative analysis of ternary isomer mixtures of saccharide by terahertz time domain spectroscopy combined with chemometrics. Vib Spectrosc 100:64–70

    CAS  Google Scholar 

  • Dworak V, Mahns B, Selbeck J, Gebbers R, Weltzien C (2017) Terahertz spectroscopy for proximal soil sensing: an approach to particle size analysis. Sensors 17(10):2387

    PubMed Central  Google Scholar 

  • Fawole O, Sinha K, Tabib-Azar M (2015) Monitoring yeast activation with sugar and zero-calorie sweetener using terahertz waves. In Sensors, 2015 IEEE. 1–4

  • Feng CH, Otani C (2020) Terahertz spectroscopy technology as an innovative technique for food: current state-of-the-art research advances. Crit Rev Food Sci Nutr, 1–21

  • Gallerano G, Biedron S (2004) Overview of terahertz radiation sources. In Proceedings of the 2004 FEL Conference. 216–221

  • Garbacz P (2016) Terahertz imaging – principles, techniques, benefits, and limitations. Problemy Eksploatacji-Maintenance Problems 1:81–92

    Google Scholar 

  • Ge H, Jiang Y, Zhang Y (2018) THz spectroscopic investigation of wheat-quality by using multi-source data fusion. Sensors 18(11):3945

    PubMed Central  Google Scholar 

  • Gente R, Busch SF, Stübling EM, Schneider LM, Hirschmann CB, Balzer JC, Koch M (2016) Quality control of sugar beet seeds with THz time-domain spectroscopy. IEEE Trans Terahertz Sci Technol 6(5):754–756

    Google Scholar 

  • Di Girolamo FV, Pagano M, Tredicucci A, Bitossi M, Paoletti R, Barzanti GP,...Toncelli A (2021) Detection of fungal infections in chestnuts: a terahertz imaging-based approach. Food Cont 123: 107700

  • Gowen AA, O’Sullivan C, O’Donnell CP (2012) Terahertz time domain spectroscopy and imaging: emerging techniques for food process monitoring and quality control. Trends Food Sci Tech 25:40–46

    CAS  Google Scholar 

  • Gregory IS, Baker C, Tribe WR, Bradley IV, Evans MJ, Linfield EH, Davies AG, Missous M (2005) Optimization of photomixers and antennas for continuous-wave terahertz emission. IEEE J Quantum Electron 41:717–728

    CAS  Google Scholar 

  • Grischkowsky D, Keiding S, Exter M, Fattinger C (1990) Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J Opt Sci Am B 7(10):2006–2015

    CAS  Google Scholar 

  • Guillet JP, Recur B, Frederique L, Bousquet B, Canioni L, Manek-Hönninger I, Desbarats P, Mounaix P (2014) Review of terahertz tomography techniques. J Infrared Millim Terahertz Waves 35(4):382–411

    CAS  Google Scholar 

  • Haff RP, Toyofuku N (2008) X-ray detection of defects and contaminants in the food industry. Sens Instrum Food Qual Saf 2(4):262–273

    Google Scholar 

  • Hashimoto S, Chin S, Kobayashi K, Kawata K, Lin D, Amano S, Miyamoto S (2016) Development of terahertz radiation sources using the LEENA compact linear accelerator. Electron Commun Jpn 99(1):12–21

    Google Scholar 

  • H-Domínguez E, Cruz-López E, Reyes-Nava JA, Conde J, Briones E, Vilchis H (2018) First principles for evaluation of the moisture content in mango slice by tera-hertz pulses. In 2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). IEEE. 1–4

  • HeY UBSY, Parrott EP, Ahuja AT, Pickwell-MacPherson E (2016) Freeze-thaw hysteresis effects in terahertz imaging of biomedical tissues. Biomed Opt Express 7(11):4711–4717

    Google Scholar 

  • Hindle F, Kuuliala L, Mouelhi M, Cuisset A, Bray C, Vanwolleghem M, Devlieghere F, Mouret G, Bocquet R (2018) Monitoring of food spoilage by high resolution THz analysis. Analyst 143(22):5536–5544

    PubMed  CAS  Google Scholar 

  • Hirata A, Harada M, Nagatsuma T (2003) 120GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals. J Lightwave Technol 21:2145–2153

    Google Scholar 

  • Huang H, Zhao H, Zhang B, Su Y, Jiang W, Cai B, You G, Ma Y (2018) A terahertz transmission imaging based approach for liquid alcohol wettability investigation. Infrared Phys Technol 89:110–114

    CAS  Google Scholar 

  • Hui L, Jingzhu W, Cuiling L, Xiaorong S (2018) Study on pretreatment methods of terahertz time domain spectral image for maize seeds. IFAC-PapersOnLine 51(17):206–210

    Google Scholar 

  • Jepsen PU, Møller U, Merbold H (2007) Investigation of aqueous alcohol and sugar solutions with reflection terahertz time domain spectroscopy. Opt Express 15(22):14717–14737

    PubMed  CAS  Google Scholar 

  • Jepsen PU, Cooke DG, Koch M (2011) Terahertz spectroscopy and imaging–modern techniques and applications. Laser Photonics Rev 5(1):124–166

    CAS  Google Scholar 

  • Jiang Y, Ge H, Lian F, Zhang Y, Xia S (2015) Discrimination of moldy wheat using terahertz imaging combined with multivariate classification. RSC Adv 5(114):93979–93986

    CAS  Google Scholar 

  • Jiang Y, Ge H, Zhang Y (2019) Detection of foreign bodies in grain with terahertz reflection imaging. Optik 181:1130–1138

    CAS  Google Scholar 

  • Jiang Y, Ge H, Zhang Y (2020) Quantitative analysis of wheat maltose by combined terahertz spectroscopy and imaging based on boosting ensemble learning. Food Chem 307:125533

  • Kang J, Song J, Jung TS, Kwak K, Chun HS (2018) In-situ measurement of vitamin C content in commercial tablet products by terahertz time-domain. J Infrared Millim Terahertz Waves 39(4):367–377

    CAS  Google Scholar 

  • Karaliūnas M, Nasser KE, Urbanowicz A, Kašalynas I, Bražinskienė D, Asadauskas S, Valušis G (2018) Non-destructive inspection of food and technical oils by terahertz spectroscopy. Sci Rep 8(1):1–11

    Google Scholar 

  • Karaliūnas M, Venckevičius R, Kašalynas I, Puc U, Abina A, Jeglič A, Zidanšek A, Valušis G (2015) Investigation of pharmaceutical drugs and caffeine-containing foods using fourier and terahertz time-domain spectroscopy. In Terahertz emitters, receivers, and applications VI (International Society for Optics and Photonics). 9585:95850U

  • Karaliūnas M, Dapšys I, Urbanowicz A, Vektaris G, Vektarienė A, Bražinskienė D, Valušis G (2019) Inspection of oils, caffeine containing foods and consumable plant leaves by time-domain THz spectroscopy. In 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE. 1–2

  • Karpowicz N, Zhong H, Xu J, Lin KI, Hwang JS, Zhang XC (2005) Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging. Semicond Sci Technol 20(7):S293

    CAS  Google Scholar 

  • Kim GJ, Kim JI, Kim S, Lee JH, Jeon TI (2018) Resonant slit-type probe with rounded matching structure for terahertz imaging. J Korean Phys Soc 72(10):1264–1270

    CAS  Google Scholar 

  • Klatt G, Gebs R, Schäfer H, Nagel M, Janke C, Bartels A, Dekorsy T (2010) High-resolution terahertz spectrometer. IEEE J Sel Top Quantum Electron 17(1):159–168

    Google Scholar 

  • Kumar S, Mittal GS (2010) Rapid detection of microorganisms using image processing parameters and neural network. Food Bioproc Technol 3(5):741–751

    Google Scholar 

  • Lee GJ, Kim S, Kwon TH (2017) Effect of moisture content and particle size on extinction coefficients of soils using terahertz time-domain spectroscopy. IEEE Trans Terahertz Sci Technol 7(5):529–535

    CAS  Google Scholar 

  • Lee DK, Kim G, Son JH, Seo M (2016) Highly sensitive terahertz spectroscopy of residual pesticide using nano-antenna. In Terahertz, RF, Millimeter, and submillimeter-wave technology and applications IX. International Society for Optics and Photonics 9747:97470S

  • Lewis RA (2017) Invited review terahertz transmission, scattering, reflection, and absorption—the interaction of thz radiation with soils. J Infrared Millim Terahertz Waves 38(7):799–807

    Google Scholar 

  • Li M, Dai G, Chang T, Shi C, Wei D, Du C, Cui HL (2017) Accurate determination of geographical origin of tea based on terahertz spectroscopy. Appl Sci 7(2):172

    Google Scholar 

  • Li T, Sun Y, Shi W, Shao G, Liu J (2018a) Terahertz pulse imaging: a novel denoising method by combing the ant colony algorithm with the compressive sensing. Open Phys 16(1):631–640

    Google Scholar 

  • Li B, Long Y, Yang H (2018b) Measurements and analysis of water content in winter wheat leaf based on terahertz spectroscopy. Int J Agric Biol Eng 11(3):178–182

    Google Scholar 

  • Li C, Li B, Ye D (2020b) Analysis and identification of rice adulteration using terahertz spectroscopy and pattern recognition algorithms. IEEE Access 8:26839–26850

    Google Scholar 

  • Li B, Zhao X, Zhang Y, Zhang S, Luo B (2020) Prediction and monitoring of leaf water content in soybean plants using terahertz time-domain spectroscopy. Comput Electron Agric 170:105239

  • Lian FY, Ge HY, Ju XJ, Zhang Y, Fu MX (2019) Quantitative analysis of trans fatty acids in cooked soybean oil using terahertz spectrum. J Appl Spectrosc 86(5):917–924

    CAS  Google Scholar 

  • Liang QI, Maocheng ZHAO, Jie ZHAO, Yuweiyi TANG (2019) Preliminary investigation of terahertz spectroscopy to predict pork freshness non-destructively. Food Sci. Technol. (Campina). (AHEAD)

  • Liu J, Fan L (2020) Qualitative and quantitative determination of potassium aluminum sulfate dodecahydrate in potato starch based on terahertz spectroscopy. Microw Opt Technol Lett 62(2):525–530

    Google Scholar 

  • Liu W, Liu C, Yu J, Zhang Y, Li J, Chen Y, Zheng L (2018a) Discrimination of geographical origin of extra virgin olive oils using terahertz spectroscopy combined with chemometrics. Food Chem 251:86–92

    PubMed  CAS  Google Scholar 

  • Liu W, Zhang Y, Yang S, Han D (2018b) Terahertz time-domain attenuated total reflection spectroscopy applied to the rapid discrimination of the botanical origin of honeys. Spectrochim Acta A Mol Biomol Spectrosc 196:123–130

    PubMed  CAS  Google Scholar 

  • Liu W, Zhao P, Wu C, Liu C, Yang J, Zheng L (2019) Rapid determination of aflatoxin B1 concentration in soybean oil using terahertz spectroscopy with chemometric methods. Food Chem 293:213–219

    PubMed  CAS  Google Scholar 

  • Liu W, Zhang Y, Li M, Han D, Liu W (2020) Determination of invert syrup adulterated in acacia honey by terahertz spectroscopy with different spectral Features. J Sci Food Agric 100(5):1913–1921

    PubMed  CAS  Google Scholar 

  • Liu W, Zhao P, Shi Y, Liu C, Zheng L (2021) Rapid determination of peroxide value of peanut oils during storage based on terahertz spectroscopy. Food Anal Methods 1–9

  • Lu SH, Li BQ, Zhai HL, Zhang X, Zhang ZY (2018) An effective approach to quantitative analysis of ternary amino acids in foxtail millet substrate based on terahertz spectroscopy. Food Chem 246:220–227

    PubMed  CAS  Google Scholar 

  • Lucyszyn S, Hu F, Otter WJ (2013) Technology demonstrators for low-cost terahertz engineering. In 2013 Asia-Pacific Microwave Conference Proceedings (APMC). IEEE. 518–520

  • Luo H, Zhu J, Xu W, Cui M (2019) Identification of soybean varieties by terahertz spectroscopy and integrated learning method. Optik 184:177–184

    CAS  Google Scholar 

  • Manickavasagan A, Jayasuriya H (Eds.) (2014) Imaging with electromagnetic spectrum: applications in food and agriculture; Springer.

  • Marczewski J, Coquillat D, Knap W, Kolacinski C, Kopyt P, Kucharski K, Lusakowski J, Obrebski D, Tomaszewski D, Yavorskiy D, Zagrajek P (2018) THz detectors based on Si-CMOS technology field effect transistors–advantages, limitations and perspectives for THz imaging and spectroscopy. Opto-Electron Rev 26(4):261–269

    Google Scholar 

  • Markl D, Dong R, Li J, Zeitler JA (2018) In-situ monitoring of powder density using terahertz pulsed imaging. In 2018 43rd International conference on infrared, millimeter, and terahertz waves (IRMMW-THz) IEEE. 1–3.

  • Modupalli N, Naik M, Sunil CK, Natarajan V (2021) Emerging non-destructive methods for quality and safety monitoring of spices. Trends Food Sci Technol 108:133–147

    CAS  Google Scholar 

  • Mohd Khairi M. T., Ibrahim S., Md Yunus M. A., Faramarzi, M. (2018). Noninvasive techniques for detection of foreign bodies in food: a review. J. food process eng 41(6):e12808

  • Molter D, Trierweiler M, Ellrich F, Jonuscheit J, Von Freymann G (2017) Interferometry-aided terahertz time-domain spectroscopy. Opt Express 25(7):7547–7558

    PubMed  CAS  Google Scholar 

  • Morita Y, Dobroiu A, Otani C, Kawase K (2007) Real-time terahertz diagnostics for detecting microleak defects in the seals of flexible plastic packaging. J Adv Mech Des Syst Manuf 1(3):338–345

    Google Scholar 

  • Nakajima S, Shiraga K, Suzuki T, Kondo N, Ogawa Y (2019) Quantification of starch content in germinating mung bean seedlings by terahertz spectroscopy. Food Chem 294:203–208

    PubMed  CAS  Google Scholar 

  • Nakajima S, Horiuchi S, Ikehata A, Ogawa Y. (2021). Determination of starch crystallinity with the Fourier-transform terahertz spectrometer. Carbohydr. Polym 262:117928

  • Nie P, Qu F, Lin L, Dong T, He Y, Shao Y, Zhang Y (2017) Detection of water content in rapeseed leaves using terahertz spectroscopy. Sensors 17(12):2830

    PubMed Central  Google Scholar 

  • Niu L, Wang K, Yang Y, Wu Q, Ye X, Yang Z, Liu J, Yu H (2018) Diffractive elements for zero-order bessel beam generation with application in the terahertz reflection imaging. IEEE Photon J 11(1):1–12

    Google Scholar 

  • Nóvoa JA, Ordonez I, Rial C, Martın J, Gil A, Salgueiro JR (2015) Time-domain terahertz spectrometer for angular reflection measurements. In Journal of Physics: Conference Series 605:012026

  • Oh GH, Kim HS, Park DW, Kim HS (2020) In-situ monitoring of moisture diffusion process for wood with terahertz time-domain spectroscopy. Opt Laser Eng 128:106036.

  • Ok G, Park K, Chun HS, Chang HJ, Lee N, Choi SW (2015) High-performance sub-terahertz transmission imaging system for food inspection. Biomed Opt Express 6(5):1929–1941

    PubMed  PubMed Central  Google Scholar 

  • Ok G, Park K, Lim MC, Jang HJ, Choi SW (2018) 140-GHz subwavelength transmission imaging for foreign body inspection in food products. J Food Eng 221:124–131

    Google Scholar 

  • Öztürk T, Morikawa O (2019) THz applications of multimode laser diodes: a review. Turk J Phys 43(4):303–313

    Google Scholar 

  • Pala N, Shur MS (2008) Plasmonic terahertz detectors for biodetection. Electron Lett 44(24):1391–1393

    Google Scholar 

  • Pan T, Li S, Zou T, Yu Z, Zhang B, Wang C, Zhang J, He M, Zhao H (2017) Terahertz spectra of l-phenylalanine and its monohydrate. Spectrochim Acta A Mol Biomol Spectrosc 178:19–23

    PubMed  CAS  Google Scholar 

  • Parasoglou P, Parrott EPJ, Zeitler JA, Rasburn J, Powell H, Gladden LF, Johns ML (2010) Quantitative water content measurements in food wafers using terahertz radiation. Terahertz Sci Tech 3(4):176–182

    Google Scholar 

  • Park GS (2012) Research on biomedical systems using THz radiation. In The 4th International Workshop on Far-infrared Technologies 31

  • Peiponen KE, Zeitler A, Kuwata-Gonokami M (Eds.) (2012) Terahertz spectroscopy andimaging; Springer, Vol. 171. p 676

  • Piesiewicz R, Kleine-Ostmann T, Krumbholz N, Mittleman D, Koch M, Schöbel j, Kürner T, (2007) Short-range ultrabroadband terahertz communications: concepts and perspectives. IEEE Antennas Propag Mag 49:24–39

    Google Scholar 

  • Poudel KN, Floyd S, Robertson W (2019) Characterization of oils and oil mixtures using terahertz time-domain spectroscopy. In 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. IEEE. 113–114

  • Qin B, Li Z, Luo Z, Li Y, Zhang H (2017) Terahertz time-domain spectroscopy combined with PCA-CFSFDP applied for pesticide detection. Opt Quant Electron 49(7):244

    Google Scholar 

  • Qu F, Lin L, He Y, Nie P, Cai C, Dong T, Pan Y, Tang Y, Luo S (2018a) Terahertz multivariate spectral analysis and molecular dynamics simulations of three pyrethroid pesticides. J Infrared Millim Terahertz Waves 39(11):1148–1161

    Google Scholar 

  • Qu F, Lin L, He Y, Nie P, Cai C, Dong T, Pan Y, Tang Y, Luo S (2018b) Spectral characterization and molecular dynamics simulation of pesticides based on terahertz time-domain spectra analyses and density functional theory (DFT) calculations. Molecules 23(7):1607

    PubMed Central  Google Scholar 

  • Qu F, Lin L, Cai C, Dong T, He Y, Nie P (2018c) Molecular characterization and theoretical calculation of plant growth regulators based on terahertz time-domain spectroscopy. Appl Sci 8(3):420

    Google Scholar 

  • Radhanpura K, Hargreaves S, Lewis RA, Henini M (2009) The role of optical rectification in the generation of terahertz radiation from GaBiAs. Appl Phys Lett 94(25)

  • Rafiqa A, Makroob HA, Sachdevaa P, Sharmaa S (2013) Application of computer vision system in food; processing- a review. Int J Eng Res Appl 3(6):1197–1205

    Google Scholar 

  • Redo-Sanchez A, Zhang XC (2008) Terahertz science and technology trends. IEEE J Sel Top Quantum Electron 14(2):260–269

    CAS  Google Scholar 

  • Ren L, Pint CL, Booshehri LG, Rice WD, Wang X, Hilton DJ, Takeya K, Kawayama I, Tonouchi M, Hauge RH, Kono J (2009) Carbon nanotube terahertz polarizer. Nano Lett 9(7):2610–2613

    PubMed  CAS  Google Scholar 

  • Ren A, Zahid A, Imran MA, Alomainy A, Fan D, Abbasi QH (2019) Terahertz sensing for fruit spoilage monitoring. In 2019 Second International Workshop on Mobile Terahertz Systems (IWMTS). IEEE 1–4

  • Renk KF, Rogl A, Stahl BI (2007) Semiconductor-superlattice parametric oscillator for generation of sub-terahertz and terahertz waves. J Lumin 125(1–2):252–258

    CAS  Google Scholar 

  • Sanjuan F, Gaborit G, Coutaz JL (2018) Sub-wavelength terahertz imaging through optical rectification. Sci Rep 8(1):1–7

    CAS  Google Scholar 

  • Schlüter O, Foerster J, Geyer M, Knorr D, Herppich WB (2009) Characterization of high-hydrostatic-pressure effects on fresh produce using chlorophyll fluorescence image analysis. Food Bioproc Tech 2(3):291–299

    Google Scholar 

  • Shen Y, Yin Y, Li B, Zhao C, Li G (2021) Detection of impurities in wheat using terahertz spectral imaging and convolutional neural networks. Comput Electron Agric 181:105931

  • Shi J, Wang Y, Xu D, Yan C, Chen T, He Y, Feng H (2017) Terahertz imaging based on morphological reconstruction. IEEE J Sel Top Quantum Electron 23(4):1–7

    Google Scholar 

  • Shin HJ, Choi SW, Ok G (2018a) Qualitative identification of food materials by complex refractive index mapping in the terahertz range. Food Chem 245:282–288

    PubMed  CAS  Google Scholar 

  • Shin HJ, Oh SJ, Lim MC, Choi SW, Ok G (2018b) Dielectric traces of food materials in the terahertz region. Infrared Phys Technol 92:128–133

    CAS  Google Scholar 

  • Singh CB, Choudhary R, Jayas DS, Paliwal J (2010) Wavelet analysis of signals in agriculture and food quality inspection. Food Bioproc Tech 3(1):2–12

    Google Scholar 

  • Soltani A, Jahn D, Duschek L, Castro-Camus E, Koch M, Withayachumnankul W (2016) Attenuated total reflection terahertz time-domain spectroscopy: uncertainty analysis and reduction scheme. IEEE Trans Terahertz Sci Technol 6(1):32–39

    CAS  Google Scholar 

  • Stojanovic N, Drescher M (2013) Accelerator-and laser-based sources of high-field terahertz pulses. J Phys B Atom Molec Phys 46(19):192001

  • Stranzinger S, Faulhammer E, Li J, Dong R, Khinast JG, Zeitler JA, Markl D (2019) Measuring bulk density variations in a moving powder bed via terahertz in-line sensing. Powder Technol 344:152–160

    CAS  Google Scholar 

  • Suhandy D, Suzuki T, Ogawa Y, Kondo N, Naito H, Ishihara T, Takemoto Y, Liu WA (2012) Quantitative study for determination of glucose concentration using attenuated total reflectance terahertz (ATR-THz) spectroscopy. EAEF 5(3):90–95

    Google Scholar 

  • Sun X, Liu J (2020) Measurement of plumpness for intact sunflower seed using terahertz transmittance imaging. J Infrared Millim Terahertz Waves 41(3):307–321

    Google Scholar 

  • Sun X, Zhu K, Hu J, Jiang X, Liu Y (2019a) Nondestructive detection of melamine in milk powder by terahertz spectroscopy and correlation analysis algorithm. J Appl Spectrosc 86(4):661–665

    CAS  Google Scholar 

  • Sun X, Zhu K, Liu J, Hu J, Jiang X, Liu Y, Gong Z (2019b) Terahertz spectroscopy determination of benzoic acid additive in wheat flour by machine learning. J Infrared Millim Terahertz Waves 40(4):466–475

    CAS  Google Scholar 

  • Takahashi T, Matsuyama T, Kobayashi K, Fujita Y (1998) Utilization of coherent transition radiation from a linear accelerator as a source of millimeter-wave spectroscopy. Rev Sci Instr 69:3770–3775

    CAS  Google Scholar 

  • Takehara D, Endo M, Ishibashi T, Shimizu M, Kusanagi S, Nozokido T, Bae, J (2018) Dual-polarization imaging with real-time capability using a terahertz noise source for food inspection. In 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE 1–2

  • Tang M, Xia L, Wei D, Yan S, Zhang M, Yang Z, Cui HL (2020) Rapid and label-free metamaterial-based biosensor for fatty acid detection with terahertz time-domain spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 228:117736

  • Tani M, Watanabe M, Sakai K (2002) Photoconductive twin dipole antennas for THz transceiver. Electron Lett 38(1):5e6

  • Taylor J, Chiou CP, Bond LJ (2019) A methodology for sorting haploid and diploid corn seed using terahertz time domain spectroscopy and machine learning. In AIP Conference Proceedings (Vol. 2102, No. 1, p. 080001). AIP Publishing LLC.

  • Tournois P (1997) Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems. Opt Commun 140(4–6):245–249

    CAS  Google Scholar 

  • Urbanek B, Möller M, Eisele M, Baierl S, Kaplan D, Lange C, Huber R (2016) Femtosecond terahertz time-domain spectroscopy at 36 kHz scan rate using an acousto-optic delay. Appl Phys Lett 108(12):121101

  • Vieira FS, Pasquini C (2014) Determination of cellulose crystallinity by terahertz-time domain spectroscopy. Anal Chem 86(8):3780–3786

    PubMed  CAS  Google Scholar 

  • Wang XK, Cui Y, Hu D, Sun WF, Ye JS, Zhang Y (2009) Terahertz Quasi-near-field real-time imaging. Opt Commun 282(24):4683–4687

    CAS  Google Scholar 

  • Wang C, Qin J, Xu W, Chen M, Xie L, Ying Y (2018b) Terahertz imaging applications in agriculture and food engineering: a review. Trans ASABE 61(2):411–424

    CAS  Google Scholar 

  • Wang C, Zhou R, Huang Y, Xie L, Ying Y (2019) Terahertz spectroscopic imaging with discriminant analysis for detecting foreign materials among sausages. Food Control 97:100–104

    CAS  Google Scholar 

  • Wang N, Cakmakyapan S, Lin YJ, Javadi H, Jarrahi M (2018) Room temperature terahertz spectrometer with quantum-level sensitivity. arXiv.org, arXiv:1806.05256

  • Wang Q, Xie L, Ying Y (2021) Overview of imaging methods based on terahertz time-domain spectroscopy. Appl Spectrosc Rev 1–16

  • Watanabe A, Okuno T, Ueda T (2019) U.S. Patent No. 10,352,849. Washington, DC: U.S. Patent and Trademark Office

  • Wei X, Zheng W, Zhu S, Zhou S, Wu W, Xie Z (2020) Application of terahertz spectrum and interval partial least squares method in the identification of genetically modified soybeans. Spectrochim Acta A Mol Biomol Spectrosc 118453

  • Wei X, Li S, Zhu S, Zheng W, Zhou S, Wu W, Xie Z (2021) Quantitative analysis of soybean protein content by terahertz spectroscopy and chemometrics. Chemom Intell Lab Syst 208: 104199

  • Weiller S, Tanabe T, Oyama Y (2018) Terahertz non-contact monitoring of cocoa butter in chocolate

  • Wilk R, Hochrein T, Koch M, Mei M, Holzwarth R (2011) Terahertz spectrometer operation by laser repetition frequency tuning. JOSA B 28(4):592–595

    CAS  Google Scholar 

  • Yan L, Liu C, Qu H, Liu W, Zhang Y, Yang J, Zheng L (2018) Discrimination and measurements of three flavonols with similar structure using terahertz spectroscopy and chemometrics. J Infrared Millim Terahertz Waves 39(5):492–504

    CAS  Google Scholar 

  • Yan Z, Ying Y, Zhang H, Yu H (2006) Research progress of terahertz wave technology in food inspection. In Terahertz Physics, Devices, and Systems (Vol. 6373, p. 63730R). International Society for Optics and Photonics

  • Yan Z, Zhang H, Ying Y (2007) Research progress of terahertz wave technology in quality measurement of food and agricultural products. Guang pu xue yu Guang pu fen xi= Guang pu. 27(11):2228–2234

  • Yan Z, Xinke W, Ye C, Wenfeng S (2009) THz quasi-near-field focal plane imaging. infrared, millimeter, and terahertz waves, 2009. IRMMW-THz 2009. 34th International Conference on

  • Yang JR, Lee WJ, Han ST (2016a) Signal-conditioning block of a 1× 200 CMOS detector array for a terahertz real-time imaging system. Sensors 16(3):319

    PubMed Central  Google Scholar 

  • Yang X, Wei D, Yan S, Liu Y, Yu S, Zhang M, Yang Z, Zhu X, Huang Q, Cui HL, Fu W (2016b) Rapid and label-free detection and assessment of bacteria by terahertz time-domain spectroscopy. J Biophotonics 9(10):1050–1058

    PubMed  CAS  Google Scholar 

  • Yang X, Yang K, Luo Y, Fu W (2016c) Terahertz spectroscopy for bacterial detection: opportunities and challenges. Appl Microbiol Biotechnol 100(12):5289–5299

    PubMed  CAS  Google Scholar 

  • Yang X, Zhao X, K. Yang Y. P. Liu Y. Liu W. L. Fu and Y. Luo. (2016d) Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol 34(10):810–824

    PubMed  CAS  Google Scholar 

  • Yang SH, Jarrahi M (2016) High-power continuous-wave terahertz generation through plasmonic photomixers. In Microwave Symposium (IMS), 2016 IEEE MTT-S international. IEEE. 1–4

  • Yang X, Shi J, Wang Y, Yang K, Zhao X, Wang G, Xu D, Wang Y, Yao J, Fu W (2018) Label-free bacterial colony detection and viability assessment by continuous-wave terahertz transmission imaging. J Biophotonics 11(8):e201700386

  • Yang S, Li C, Mei Y, Liu W, Liu R, Chen W,… Xu K (2021) Discrimination of corn variety using Terahertz spectroscopy combined with chemometrics methods. Spectrochim. Acta A Mol Biomol Spectrosc SPECTROCHIM ACTA A 252:119475

  • Ying-Ying LI, Chang-Cheng SHI, Hua-Bin WANG, Zhong-Dong LIU (2016) Application of terahertz spectroscopy and imaging techniques in food adulteration. DEStech Transactions on Environment, Energy and Earth Sciences

  • Zahid A, Abbas HT, Ren A, Alomainy A, Imran MA, Abbasi QH (2020) Application of terahertz sensing at nano-scale for precision agriculture. Wireless Automation as an Enabler for the next Industrial Revolution, 241–257

  • Zang Z, Yan S, Han X, Wei D, Cui HL, Du C (2019) Temperature- and pH-dependent protein conformational changes investigated by terahertz dielectric spectroscopy. Infrared Phys Technol 98:260–265

    CAS  Google Scholar 

  • Zhang H, Li Z (2018) Terahertz spectroscopy applied to quantitative determination of harmful additives in medicinal herbs. Optik 156:834–840

    CAS  Google Scholar 

  • Zhang W, Nickel D, Mittleman D (2017a) High-pressure cell for terahertz time-domain spectroscopy. Opt Express 25(3):2983–2993

    PubMed  CAS  Google Scholar 

  • Zhang H, Li Z, Chen T, Liu JJ (2018a) Detection of poisonous herbs by terahertz time-domain spectroscopy. J Appl Spectrosc 85(1):197–202

    CAS  Google Scholar 

  • Zhang H, Li Z, Hu F, Qin B, Zhao Y, Chen T, Hu C (2018b) Sensitive distinction between herbs by terahertz spectroscopy and a metamaterial resonator. Spectrosc Lett 51(4):174–178

    CAS  Google Scholar 

  • Zhang X, Lu S, Liao Y, Zhang Z (2017) Simultaneous determination of amino acid mixtures in cereal by using terahertz time domain spectroscopy and chemometrics. Chemom Intell Lab Syst 8–15

  • Zhao R, Zou B, Zhang G, Xu D, Yang, Y. (2020) High-sensitivity identification of aflatoxin B1 and B2 using terahertz time-domain spectroscopy and metamaterial-based terahertz biosensor. J Phys DAppl Phys 53(19):195401

  • Zhong Y, Du L, Liu Q, Zhu L, Zhang B (2020) Metasurface-enhanced ATR sensor for aqueous solution in the terahertz range. Opt Commun 465:125508

  • Zhou T, Li H, Wan WJ, Fu ZL, Cao JC (2017) Terahertz imaging using photomixers based on quantum well photodetectors. AIP Adv. 7(10):105215

  • Zhou T, Zhang R, Yao C, Fu ZL, Shao DX, Cao JC (2017) Terahertz three-dimensional imaging based on computed tomography with photonics-based noise source. Chin Phys Lett 34(8):084206

Download references

Acknowledgements

We would like to thank Indian Institute of Food Processing Technology, Thanjavur, India.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally for writing, review and editing of the manuscript.

Corresponding author

Correspondence to Sunil C. K.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

S, K., M, Y., Rawson, A. et al. Recent Advances in Terahertz Time-Domain Spectroscopy and Imaging Techniques for Automation in Agriculture and Food Sector. Food Anal. Methods 15, 498–526 (2022). https://doi.org/10.1007/s12161-021-02132-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-021-02132-y

Keywords

Navigation