Skip to main content
Log in

Extraction Strategies for Simultaneous Determination of Florfenicol and Florfenicol Amine in Tilapia (Oreochromis niloticus) Muscle: Quantification by LC-MS/MS

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

A liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous determination of the veterinary drug florfenicol (FF) and its major metabolite, florfenicol amine (FFA), in tilapia muscles (Oreochromis niloticus). Three different sample preparation procedures (DLLME, sub-zero, and modified QuEChERS) were tested. The best extraction results were obtained by using the modified QuEChERS. The quantification was made by using a LC-MS/MS analysis, with a Lichrocart Cartridge Purospher Star C8 HPLC column (250 mm×4.6 mm, 5 μm particle size). Analytes were separated with a mobile phase consisting of Milli-Q water to acetonitrile 40:60 (v/v), both with 0.1% formic acid. The validation parameters were recovery of 70 to 79% and 62 to 69%, limit of detection of 0.0625 μg g−1 and 0.125 μg g−1, and limit of quantification of 0.125 μg g−1 and 0.25 μg g−1, for FF and FFA, respectively. CCα was 1183 μg kg−1 and CCβ was 1365 μg kg−1 for FF, intraday and interday precision has CV ≤20%, and linear range was 0.625 to 5.00 μg g−1. This method was shown to be simple and rapid when compared to other, more conventional methods. Also, it has low reagent and solvent consumption, with low waste generation, which is in line with the principles of green chemistry. The method was successfully applied for the analyzes of tilapia exposed to the antibiotic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CCα :

Limit of decision

CCβ :

Detection capacity

EC:

European Commission

FF:

Florfenicol

FFA:

Florfenicol amine

MAPA:

Ministry of Agriculture, Livestock and Food Supply - Brazil

MISPE:

Molecularly imprinted solid-phase extraction

MSPD:

Matrix solid-phase dispersion extraction

QuEChERS:

Quick, Easy, Cheap, Effective, Rugged and Safe

UA-DLLME:

Ultrasound-assisted dispersive liquid-liquid microextraction

References

  • Alechaga E, Moyano E, Galceran MT (2012) Ultra-high performance liquid chromatography-tandem mass spectrometry for the analysis of phenicol drugs and florfenicol-amine in foods. Analyst 137:2486–2494

    Article  CAS  Google Scholar 

  • Anastassiades M, Lehotay SJ, Stajnbaher D, Schenck FJ (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J Assoc Off Anal Chem 86:412–431

    CAS  Google Scholar 

  • Barreto F, Ribeiro C, Barcellos Hoff R, Dalla Costa T (2016) Determination of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in poultry, swine, bovine and fish by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1449:48–53

    Article  CAS  Google Scholar 

  • Branco LCC (2016) Farmacocinética e Depleção de resíduos do florfenicol em tambaqui (Colossoma macropomun). University of Campinas, Brazil, Dissertation

    Google Scholar 

  • Carraschi SP, Cruz C, Machado Neto JG, Castro MP, Bortoluzzi NL, Girio ACF (2011) Eficácia do florfenicol e da oxitetraciclina no controle de Aeromonas hydrophila em pacu (Piaractus mesopotamicus). Arq Bras Med Vet Zootec 63:579–583

    Article  CAS  Google Scholar 

  • EC (2002) European Comission. Commission Regulation n° 657/2002 of 12 August 2002

  • EC (2009) European Comission. Commission Regulation n° 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin, https://ec.europa.eu/health/sites/health/files/files/eudralex/vol-5/reg_2010_37/reg_2010_37_en.pdf . Acessed 30 October 2018

  • FAO (2018) Food and Agriculture Organization of the United Nations; the state of world fisheries and aquaculture, http://www.fao.org/3/i9540en/I9540EN.pdf. Acessed 30 October 2018

  • Food Ingredients Brasil (2009) Proteínas do peixe, 8:23–32

  • Gaikowski MP, Mushtaq M, Cassidy P, Meinertz JR, Schleis SM, Sweeney D, Endris RG (2010) Depletion of florfenicol amine, marker residue of florfenicol, from the edible fillet of tilapia (Oreochromis niloticus×O. niloticus and O. niloticus×O. aureus) following florfenicol administration in feed. Aquaculture 301:1–6

    Article  CAS  Google Scholar 

  • Hu J, Li Y, Zhang W, Wang H, Huang C, Zhang M, Wang X (2009) Dispersive liquid-liquid microextraction followed by gas chromatography–electron capture detection for determination of polychlorinated biphenyls in fish. J Sep Sci 32:2103–2108

    Article  CAS  Google Scholar 

  • Jonsson CM, Hisano H, Paraiba LC (2017) Comissão de ética de uso de animais. Acúmulo do florfenicol e oxitetraciclina em filé de tambaquis, tilápias e pacus através da água e da ração medicada

  • Lombardo-Agüí M, García-Campaña AM, Cruces-Blanco C, Gámiz-Gracia L (2015) Determination of quinolones in fish by ultra-high performance liquid chromatography with fluorescence detection using QuEChERS as sample treatment. Food Control 50:864–868

    Article  Google Scholar 

  • MPA (2011) Ministério da Pesca e Aquicultura, Boletim estatístico da pesca e aquicultura. http://www.icmbio.gov.br/cepsul/images/stories/biblioteca/download/estatistica/est_2011_bol__bra.pdf. Acessed 30 October 2018

  • Plumb DC (2004) Veterinary Drug Handbook, fifth edn. Iowa State Press

  • MAPA (2011a) Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa n° 24 de 01 de Junho de 2011. Acessed 30 October 2018

  • MAPA (2011b) Ministério da Agricultura, Pecuária e Abastecimento. Guia de Validação e Controle de Qualidade Analítica para Fármacos em Produtos para Alimentação Animal e Medicamentos Veterinários, http://www.agricultura.gov.br/assuntos/laboratorios/arquivos-publicacoes-laboratorio/guia-de-validacao-controle-de-qualidade-analitica.pdf. Acessed 30 October 2018

  • Marques TV, Paschoal JAR, Barone RSC, Cyrino JEP, Rath S (2018) Depletion study and estimation of withdrawal periods for florfenicol and florfenicol amine in pacu (Piaractus mesopotamicus). Aquac Res 49:111–119

    Article  CAS  Google Scholar 

  • Martins ML, Primel EG, Caldas SS, Prestes OD, Adaime MB, Zanella R (2012) Microextração líquido-líquido dispersiva (DLLME): fundamentos e aplicações. Sci Chromatogr 4:35–51

    Google Scholar 

  • Nunes KSD, Vallim JH, Assalin MR, Queiroz SCN, Paraíba LC, Jonsson CM, Reyes FGR (2018) Depletion study, withdrawal period calculation and bioaccumulation of sulfamethazine in tilapia (Oreochromis niloticus) treated with medicated feed. Chemosphere 197:89–95

    Article  CAS  Google Scholar 

  • Orlando EA, Roque AGC, Losekann ME, Simionato AVC (2016) UPLC–MS/MS determination of florfenicol and florfenicol amine antimicrobial residues in tilapia muscle. J Chromatogr B 1035:8–15

    Article  CAS  Google Scholar 

  • Pan XD, Wu PG, Jiang W, Ma BJ (2015) Determination of chloramphenicol, thiamphenicol, and florfenicol in fish muscle by matrix solid-phase dispersion extraction (MSPD) and ultra-high pressure liquid chromatography tandem mass spectrometry. Food Control 52:34–38

    Article  CAS  Google Scholar 

  • Phu TM, Scippo ML, Phuong NT, Tien CTK, Son CH, Dalsgaard A (2015) Withdrawal time for sulfamethoxazole and trimethoprim following treatment of striped catfish (Pangasianodon hypophthalmus) and hybrid red tilapia (Oreochromis mossambicus × Oreochromis niloticus). Aquacult 437:256–262

    Article  CAS  Google Scholar 

  • Rezaee M, Assadi Y, Milani Hosseini MR, Aghaee E, Ahmadi F, Berijani S (2006) Determination of organic compounds in water using dispersive liquid–liquid microextraction. J Chromatogr A 1116:1–9

    Article  CAS  Google Scholar 

  • Rezk MR, Riad SM, Khattab FI, Marzouk HM (2015) Multi-residues determination of antimicrobials in fish tissues by HPLC–ESI-MS/MS method. J Chromatogr B 978-979:103–110

    Article  CAS  Google Scholar 

  • Sadeghi S, Jahani M (2013) Selective solid-phase extraction using molecular imprinted polymer sorbent for the analysis of florfenicol in food samples. Food Chem 141(2):1242–1251

    Article  CAS  Google Scholar 

  • Tao Y, Zhu F, Chen D, Wei H, Pan Y, Wang X, Liu Z, Huang L, Wang Y, Yuan Z (2014) Evaluation of matrix solid-phase dispersion (MSPD) extraction for multi-fenicols determination in shrimp and fish by liquid chromatography–electrospray ionisation tandem mass spectrometry. Food Chem 150:500–506

    Article  CAS  Google Scholar 

  • Tsai WH, Chuang HY, Chen HH, Huang JJ, Chen HC, Cheng SH, Huang TC (2009) Application of dispersive liquid–liquid microextraction and dispersive micro-solid-phase extraction for the determination of quinolones in swine muscle by high-performance liquid chromatography with diode-array detection. Anal Chim Acta 656:56–62

    Article  CAS  Google Scholar 

  • Zhang S, Liu Z, Guo X, Cheng L, Wang Z, Shen J (2008) Simultaneous determination and confirmation of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in chicken muscle by liquid chromatography–tandem mass spectrometry. J Chromatogr B 875:399–404

    Article  CAS  Google Scholar 

  • Zhao HY, Zhang GH, Bai L, Zhu S, Shan Q, Zeng DP, Sun YX (2011) Pharmacokinetics of florfenicol in crucian carp (Carassius auratus cuvieri) after a single intramuscular or oral administration. J Vet Pharmacol Therap 34:460–463

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. Carol Collins for language assistance.

Funding

This research was supported by BNDES (0117020010606007), FAPESP (2014/50867-3), CNPq (311671/2015-2; 465389/2014-7) and INCT Bioanalítica. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil, Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Beatriz Grespan Bottoli.

Ethics declarations

Conflict of Interest

Letícia Sayuri Shiroma, Sonia Claudia do Nascimento de Queiroz, Claudio Martin Jonsson and Carla Beatriz Grespan Bottoli declare no conflict of interest.

Ethical Approval

This article contains studies with animals approved by Ethical Commission for the Use of Animals (CEUA) of the Embrapa Environment (Registration 007/17) (Jonsson et al. 2017).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiroma, L.S., Queiroz, S.C.N., Jonsson, C.M. et al. Extraction Strategies for Simultaneous Determination of Florfenicol and Florfenicol Amine in Tilapia (Oreochromis niloticus) Muscle: Quantification by LC-MS/MS. Food Anal. Methods 13, 291–302 (2020). https://doi.org/10.1007/s12161-019-01633-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-019-01633-1

Keywords

Navigation