Skip to main content
Log in

Quantitative Evaluation of Impact Damage to Apple by Hyperspectral Imaging and Mechanical Parameters

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

Impact damage of apple was quantitatively investigated by hyperspectral imaging (HSI) technology within the wavelength region of 900–1700 nm. The pressure-sensitive film technique was used to measure damaged area. Statistical analysis shows a significant linear correlation between absorbed energy and damaged area, contact load, and damaged area with coefficients of determination (R2) of 0.93 and 0.92. Then, the quantitative relationships between damaged area, absorbed energy, contact load, undamaged firmness, and spectral data were established by partial least square regression (PLS). The best prediction performance yielded by the PLS model measured by coefficient of determination (RP2) and root mean square errors of prediction (RMSEP) values were 0.8 and 116.73 mm2 for damaged area, 0.89 and 0.075 J for absorbed energy, 0.53 and 67.38 N for contact load, and 0.65 and 19.99 N for undamaged firmness, respectively. The overall results demonstrate the potential of HSI for rapid and nondestructive prediction of impact damage to apples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmadi E (2012) Bruise susceptibilities of kiwifruit as affected by impact and fruit properties Research in Agricultural Engineering - UZEI (Czech Republic), p 107–113

  • Blasco J, Cubero S, Gómezsanchís J, Mira P, Moltó E (2009) Development of a machine for the automatic sorting of pomegranate (Punica granatum) arils based on computer vision. J Food Eng 90:27–34

    Article  Google Scholar 

  • Bobelyn E, Serban AS, Nicu M, Lammertyn J, Nicolai BM, Saeys W (2010) Postharvest quality of apple predicted by NIR-spectroscopy: study of the effect of biological variability on spectra and model performance. Postharvest Biol Technol 55:133–143

    Article  CAS  Google Scholar 

  • Cubero S, Aleixos N, Moltó E, Gómez-Sanchis J, Blasco J (2011) Erratum to: Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food Bioprocess Technol 4:829–830

    Article  Google Scholar 

  • Fei L, Ishikawa Y, Kitazawa H, Satake T (2010a) Impact damage to apple fruits in commercial corrugated fiberboard box packaging evaluated by the pressure-sensitive film technique. J Food Agric Environ 8:218–222

    Google Scholar 

  • Fei L, Yutaka I, Hiroaki K, Takaaki S (2010b) Measurement of impact pressure and bruising of apple fruit using pressure-sensitive film technique. J Food Eng 96:614–620

    Article  Google Scholar 

  • Lewis R, Yoxall A, Marshall MB, Canty LA (2008) Characterising pressure and bruising in apple fruit. Wear 264:37–46

    Article  CAS  Google Scholar 

  • Li Z, Thomas C (2014) Quantitative evaluation of mechanical damage to fresh fruits. Trends Food Sci Technol 35:138–150. https://doi.org/10.1016/j.tifs.2013.12.001

    Article  CAS  Google Scholar 

  • Lötze E, Huybrechts C, Sadie A, Theron KI, Valcke RM (2006) Fluorescence imaging as a non-destructive method for pre-harvest detection of bitter pit in apple fruit (Malus domestica Borkh.). Postharvest Biol Technol 40:287–294

    Article  Google Scholar 

  • Mehmood T, Liland KH, Snipen L, Sæbø S (2012) A review of variable selection methods in partial least squares regression. Chemom Intell Lab Syst 118:62–69

    Article  CAS  Google Scholar 

  • Omar AF, Atan H, Matjafri MZ (2012) NIR spectroscopic properties of aqueous acids solutions. Molecules 17:7440–7450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivera NV et al (2014) Early detection of mechanical damage in mango using NIR hyperspectral images and machine learning. Biosyst Eng 122:91–98

    Article  Google Scholar 

  • Saracoglu T, Ucer N, Ozarslan C (2011) Engineering properties and susceptibility to bruising damage of table olive (Olea europaea) fruit. Int J Agric Biol 13:801–805

    Google Scholar 

  • Vursavuş K, Ozguven F (2004) Determining the Effects of vibration parameters and packaging method on mechanical damage in golden delicious apples. Turk J Agric For 28:311–320

    Google Scholar 

  • Wang H (2013) Marker identification technique for deformation measurement. Adv Mech Eng, (2013-10-29) 2013:1255–1260

    Google Scholar 

  • Wang H, Kang Y (2002) Improved digital speckle correlation method and its application in fracture analysis of metallic foil. Opt Eng 41:436–445

    Google Scholar 

  • Wang NN, Sun DW, Yang YC, Pu H, Zhu Z (2015) Recent advances in the application of hyperspectral imaging for evaluating fruit quality. Food Anal Methods 9:1–14

    Google Scholar 

  • Xing J, Landahl S, Lammertyn J, Vrindts E, Baerdemaeker JD (2003) Effects of bruise type on discrimination of bruised and non-bruised ‘Golden Delicious’ apples by VIS/NIR spectroscopy. Postharvest Biol Technol 30:249–258

    Article  Google Scholar 

  • Yu KQ, Zhao YR, Liu ZY, Li XL, Liu F, He Y (2014) Application of visible and near-infrared hyperspectral imaging for detection of defective features in loquat. Food Bioprocess Technol 7:3077–3087

    Article  Google Scholar 

  • Yuwana Y, Duprat F (1997) Prediction of apple bruising based on the instantaneous impact shear stress and energy absorbed. Int Agrophys 11:771–772

    Google Scholar 

  • Zeebroeck MV, Linden VV, Darius P, Ketelaere BD, Ramon H, Tijskens E (2007a) The effect of fruit factors on the bruise susceptibility of apples. Postharvest Biol Technol 46:10–19

    Article  Google Scholar 

  • Zeebroeck MV, Linden VV, Darius P, Ketelaere BD, Ramon H, Tijskens E (2007b) The effect of fruit properties on the bruise susceptibility of tomatoes. Postharvest Biol Technol 45:168–175

    Article  Google Scholar 

  • Zhang X, Chu X, Ji H, Wang Y (2016) Effect of freezing rate on the onion cell deformation evaluated by digital image correlation. Food Anal Methods 9:1–8

    Article  Google Scholar 

  • Zhang B, Fan S, Li J, Huang W, Zhao C, Qian M, Zheng L (2015) Detection of early rottenness on apples by using hyperspectral imaging combined with spectral analysis and image processing. Food Anal Methods 8:2075–2086

    Article  Google Scholar 

  • Zhang H, Huang G, Song H, Kang Y (2012) Experimental investigation of deformation and failure mechanisms in rock under indentation by digital image correlation. Eng Fract Mech 96:667–675

    Article  Google Scholar 

Download references

Acknowledgments

The support by the National Natural Science Foundation of China (Grant No. 11572223, No. 11772225) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaiwen Wang.

Ethics declarations

Conflict of Interest

Duohua Xu declares that he has no conflict of interest. Huaiwen Wang declares that he has no conflict of interest. Hongwei Ji declares that he has no conflict of interest. Xiaochuan Zhang declares that he has no conflict of interest. Camelia Cerbu declares that she has no conflict of interest. Eric Hu declares that he has no conflict of interest. Fuyuan Dong declares that he has no conflict of interest.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, D., Wang, H., Ji, H. et al. Quantitative Evaluation of Impact Damage to Apple by Hyperspectral Imaging and Mechanical Parameters. Food Anal. Methods 12, 371–380 (2019). https://doi.org/10.1007/s12161-018-1369-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-018-1369-9

Keywords

Navigation