Skip to main content
Log in

Food Analysis by Microextraction Methods Based on the Use of Magnetic Nanoparticles as Supports: Recent Advances

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

In the last years, nanotechnology progress has impact several fields of food science. In food analysis, new nanomaterials have been developed in order to extract minority food components. Recently, magnetic nanoparticles (MNPs) have been used as sorbents in methodologies based on dispersive solid-phase microextraction. The main advantage of MNPs as sorbent is their magnetic behavior, which it allows to separate from the food matrix minor components with the aid of a magnet. This MNP property avoids tedious centrifugation and filtration steps, and in turn decreasing sample preparation times and source of errors. The MNPs as sorbent do not need to package in a column, and the separation process is quickly. Other advantages of MNPs in the microextraction of food components are low cost, high concentration factors, and low detection limits; this has allowed the diversification of its applications. Several methods and compounds have been used in the design and functionalization of MNPs, this review focuses in the description of these, especially for the analysis of contaminants (for example, pesticides, heavy metals, drugs, compounds produced during food processing, adulterants, among others).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amoli-Diva M, Taherimaslak Z, Allahyari M, Pourghazi K, Manafi MH (2015) Application of dispersive liquid–liquid microextraction coupled with vortex-assisted hydrophobic magnetic nanoparticles based solid-phase extraction for determination of aflatoxin M1 in milk samples by sensitive micelle enhanced spectrofluorimetry. Talanta 134:98–104. doi:10.1016/j.talanta.2014.11.007

    Article  CAS  Google Scholar 

  • Andrade-Eiroa A, Canle M, Leroy-Cancellieri V, Cerdà V (2016) Solid-phase extraction of organic compounds: a critical review (part I). TRAC-Trend Anal Chem 80:641–654. doi:10.1016/j.trac.2015.08.015

    Article  CAS  Google Scholar 

  • Asgharinezhad AA, Mollazadeh N, Ebrahimzadeh H, Mirbabaei F, Shekari N (2014) Magnetic nanoparticles based dispersive micro-solid-phase extraction as a novel technique for coextraction of acidic and basic drugs from biological fluids and waste water. J Chromatogr A 1338:1–8. doi:10.1016/j.chroma.2014.02.027

    Article  CAS  Google Scholar 

  • Bagheri H, Afkhami A, Saber-Tehrani M, Khoshsafar H (2012) Preparation and characterization of magnetic nanocomposite of Schiff base/silica/magnetite as a preconcentration phase for the trace determination of heavy metal ions in water, food and biological samples using atomic absorption spectrometry. Talanta 97:87–95. doi:10.1016/j.talanta.2012.03.066

    Article  CAS  Google Scholar 

  • Bai SS, Li Z, Zang XH, Wang C, Wang Z (2013) Graphene-based magnetic solid phase extraction-dispersive liquid-liquid microextraction combined with gas chromatographic method for determination of five acetanilide herbicides in water and green tea samples. Chinese J Anal Chem 41:1177–1182. doi:10.3724/SP.J.1096.2013.21142

    Article  CAS  Google Scholar 

  • Balasubramanian S, Panigrahi S (2010) Solid-phase microextraction (SPME) techniques for quality characterization of food products a review. Food Bioprocess Technol 4:1–26. doi:10.1007/s11947-009-0299-3

    Article  Google Scholar 

  • Barberio M, Barone P, Xu F, Bonanno A (2013) Silver nanoparticles synthesized by laser ablation in acetone: influence of ablation time and their reactivity with oxygen in the air. J Chem Eng 7:1142–1148

    CAS  Google Scholar 

  • Baumgartner J, Bertinetti L, Widdrat M, Hirt AM, Faivre D (2013) Formation of magnetite nanoparticles at low temperature: from superparamagnetic to stable single domain particles. PLoS One 8:1–6. doi:10.1371/journal.pone.0057070

    Article  Google Scholar 

  • Chen J, Zhu X (2015) Ionic liquid coated magnetic core/shell Fe3O4@SiO2 nanoparticles for the separation/analysis of linuron in food samples. Spectrochim Acta A Mol Biomol Spectrosc 137:456–462. doi:10.1016/j.saa.2014.08.113

    Article  CAS  Google Scholar 

  • Chen L, Zhang X, Sun L, Xu Y, Zeng Q, Wang H, Xu H, Yu A, Zhang H, Ding L (2009a) Fast and selective extraction of sulfonamides from honey based on magnetic molecularly imprinted polymer. J Agric Food Chem 57:10073–10080. doi:10.1021/jf902257d

    Article  CAS  Google Scholar 

  • Chen L, Liu J, Zeng Q, Wang H, Yu A, Zhang H, Ding L (2009b) Preparation of magnetic molecularly imprinted polymer for the separation of tetracycline antibiotics from egg and tissue samples. J Chromatogr A 1216:3710–3719. doi:10.1016/j.chroma.2009.02.044

    Article  CAS  Google Scholar 

  • Chen L, Wang T, Tong J (2011) Application of derivatized magnetic materials to the separation and the preconcentration of pollutants in water samples. TRAC-Trend Anal Chem 30:1095–1108. doi:10.1016/j.trac.2011.02.013

    Article  CAS  Google Scholar 

  • Chen FF, Xie XY, Shi YP (2013) Preparation of magnetic molecularly imprinted polymer for selective recognition of resveratrol in wine. J Chromatogr A 1300:112–118. doi:10.1016/j.chroma.2013.02.018

    Article  CAS  Google Scholar 

  • Deng H, Li X, Peng Q, Wang X, Chen J, Li Y (2005) Monodisperse magnetic single-crystal ferrite microsphere. Angew Chem Int Ed 44:2782–2785. doi:10.1002/anie.200462551

    Article  CAS  Google Scholar 

  • Ding J, Gao Q, Li XS, Huang W, Shi ZG, Feng YQ (2011) Magnetic solid-phase extraction based on magnetic carbon nanotube for the determination of estrogens in milk. J Sep Sci 34:2498–2504. doi:10.1002/jssc.201100323

    Article  CAS  Google Scholar 

  • Farahani MD, Shemirani F, Ramandi NF, Gharehbaghi M (2015) Ionic liquid as a ferrofluid carrier for dispersive solid phase extraction of copper from food samples. Food Anal Method 8:1979–1989. doi:10.1007/s12161-014-0082-6

    Article  Google Scholar 

  • Faraji M, Yamini Y, Rezaee M (2010) Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. J Iran Chem Soc 7:1–37. doi:10.1007/BF03245856

    Article  CAS  Google Scholar 

  • Farajzadeh MA, Mogaddam MR, Ghorbanpour H (2014) Development of a new microextraction method based on elevated temperature dispersive liquid-liquid microextraction for determination of triazole pesticides residues in honey by gas chromatography-nitrogen phosphorus detection. J Chromatogr A 1347:8–16. doi:10.1016/j.chroma.2014.04.067

    Article  CAS  Google Scholar 

  • Farrell D, Majetich SA, Wilcoxon JP (2003) Preparation and characterization of monodisperse Fe nanoparticles. J Phys Chem B 107:11022–11030. doi:10.1021/jp0351831

    Article  CAS  Google Scholar 

  • Fontanals N, Borrull F, Marcé RM (2012) Ionic liquids in solid-phase extraction. TRAC-Trend Anal Chem 41:15–26. doi:10.1016/j.trac.2012.08.010

    Article  CAS  Google Scholar 

  • Fuentes AF, Takacs L (2013) Preparation of multicomponent oxides by mechanochemical methods. J Mat Sci 48:598–611. doi:10.1007/s10853-012-6909-x

    Article  CAS  Google Scholar 

  • Gao Q, Luo D, Ding J, Feng YQ (2010) Rapid magnetic solid phase extraction based on magnetite/silica/poly(methacrylic acid–co–ethylene glycol dimethacrylate) composite microspheres for the determination of sulfonamide in milk samples. J Chromatogr A 1217:5602–5609. doi:10.1016/j.chroma.2010.06.067

    Article  CAS  Google Scholar 

  • Gao Q, Luo D, Bai M, Chen ZW, Feng YQ (2011) Rapid determination of estrogens in milk samples based on magnetite nanoparticles/polypyrrole magnetic solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry. J Agric Food Chem 59:8543–8549. doi:10.1021/jf201372r

    Article  CAS  Google Scholar 

  • Gao Q, Zheng HB, Luo D, Ding J, Feng YQ (2012) Facile synthesis of magnetic one-dimensional polyaniline and its application in magnetic solid phase extraction for fluoroquinolones in honey samples. Anal Chim Acta 720:57–62. doi:10.1016/j.aca.2011.12.067

    Article  CAS  Google Scholar 

  • Gao R, Cui X, Hao Y, Zhang L, Liu D, Tang Y (2016) A highly-efficient imprinted magnetic nanoparticle for selective separation and detection of 17β-estradiol in milk. Food Chem 194:1040–1047. doi:10.1016/j.foodchem.2015.08.112

    Article  CAS  Google Scholar 

  • Giakisikli G, Anthemidis AN (2013) Magnetic materials as sorbents for metal/metalloid preconcentration and/or separation. A review. Anal Chim Acta 789:1–16. doi:10.1016/j.aca.2013.04.021

    Article  CAS  Google Scholar 

  • Goya GF, Berquó TS, Fonseca FC, Morales MP (2003) Static and dynamic magnetic properties of spherical magnetite nanoparticles. J App Phys 94:3520–3528. doi:10.1063/1.1599959

    Article  CAS  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021. doi:10.1016/j.biomaterials.2004.10.012

    Article  CAS  Google Scholar 

  • Hao Y, Gao R, Liu D, Tang Y, Guo Z (2015) Selective extraction of gallic acid in pomegranate rind using surface imprinting polymers over magnetic carbon nanotubes. Anal Bioanal Chem 407:7681–7690. doi:10.1007/s00216-015-8930-9

    Article  CAS  Google Scholar 

  • Hao Y, Gao R, Liu D, He G, Tang Y, Guo Z (2016) Selective extraction and determination of chlorogenic acid in fruit juices using hydrophilic magnetic imprinted nanoparticles. Food Chem 200:215–222. doi:10.1016/j.foodchem.2016.01.004

    Article  CAS  Google Scholar 

  • Hashemi M, Taherimaslak Z, Rashidi S (2014a) Application of magnetic solid phase extraction for separation and determination of aflatoxins B1and B2 in cereal products by high performance liquid chromatography-fluorescence detection. J Chromatogr B 960:200–208. doi:10.1016/j.jchromb.2014.03.035

    Article  CAS  Google Scholar 

  • Hashemi M, Taherimaslak Z, Rashidi S (2014b) Enhanced spectrofluorimetric determination of aflatoxin M1 in liquid milk after magnetic solid phase extraction. Spectrochim Acta A Mol Biomol Spectrosc 128:583–590. doi:10.1016/j.saa.2014.02.108

    Article  CAS  Google Scholar 

  • He D, Zhang X, Gao B, Wang L, Zhao Q, Chen H, Wang H, Zhao C (2014) Preparation of magnetic molecularly imprinted polymer for the extraction of melamine from milk followed by liquid chromatography-tandem mass spectrometry. Food Control 36:36–41. doi:10.1016/j.foodcont.2013.07.044

    Article  CAS  Google Scholar 

  • Herrera-Herrera AV, Asensio-Ramos M, Hernández-Borges J, Rodríguez-Delgado MA (2010) Dispersive liquid-liquid microextraction for determination of organic analytes. TRAC-Trend Anal Chem 29:728–751. doi:10.1016/j.trac.2010.03.016

    Article  CAS  Google Scholar 

  • Hu Y, Liu R, Zhang Y, Li G (2009) Improvement of extraction capability of magnetic molecularly imprinted polymer beads in aqueous media via dual-phase solvent system. Talanta 79:576–582. doi:10.1016/j.talanta.2009.04.029

    Article  CAS  Google Scholar 

  • Hu C, Jia L, Liu Q, Zhang S (2010) Development of magnetic octadecylsilane particles as solid-phase extraction adsorbent for the determination of fat-soluble vitamins in fruit juice-milk beverage by capillary liquid chromatography. J Sep Sci 33:2145–2152. doi:10.1002/jssc.201000074

    Article  CAS  Google Scholar 

  • Hu Y, Li Y, Liu R, Tan W, Li G (2011) Magnetic molecularly imprinted polymer beads prepared by microwave heating for selective enrichment of β-agonists in pork and pig liver samples. Talanta 84:462–470. doi:10.1016/j.talanta.2011.01.045

    Article  CAS  Google Scholar 

  • Huang C, Hu B (2008) Silica-coated magnetic nanoparticles modified with γ-mercaptopropyltrimethoxysilane for fast and selective solid phase extraction of trace amounts of Cd, Cu, Hg, and Pb in environmental and biological samples prior to their determination by inductively coupled plasma mass spectrometry. Spectrochim Acta B 63:437–444. doi:10.1016/j.sab.2007.12.010

    Article  Google Scholar 

  • Iida H, Takayanagi K, Nakanishi T, Osaka T (2007) Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. J Colloid Interface Sci 314:274–280. doi:10.1016/j.jcis.2007.05.047

    Article  CAS  Google Scholar 

  • Jana NR, Chen Y, Peng X (2004) Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem Mater 16:3931–3935. doi:10.1021/cm049221k

    Article  CAS  Google Scholar 

  • Ji Y, Yin J, Xu Z, Zhao C, Huang H, Zhang H, Wang C (2009) Preparation of magnetic molecularly imprinted polymer for rapid determination of bisphenol A in environmental water and milk samples. Anal Bioanal Chem 395:1125–1133. doi:10.1007/s00216-009-3020-5

    Article  CAS  Google Scholar 

  • Li Y, Afzaal M, O’Brien P (2006) The synthesis of amine-capped magnetic (Fe, Mn, Co, Ni,) oxide nanocrystals and their surface modification for aqueous dispersibility. J Mater Chem 16:2175–2180. doi:10.1039/B517351E

    Article  CAS  Google Scholar 

  • Li Y, Wu X, Li Z, Zhong S, Wang W, Wang A, Chen J (2015) Fabrication of CoFe2O4-graphene nanocomposite and its application in the magnetic solid phase extraction of sulfonamides from milk samples. Talanta 144:1279–1286. doi:10.1016/j.talanta.2015.08.006

    Article  CAS  Google Scholar 

  • Liu Y, Huang Y, Liu J, Wang W, Liu G, Zhao R (2012) Superparamagnetic surface molecularly imprinted nanoparticles for water-soluble pefloxacin mesylate prepared via surface initiated atom transfer radical polymerization and its application in egg sample analysis. J Chromatogr A 1246:15–21. doi:10.1016/j.chroma.2012.01.045

    Article  CAS  Google Scholar 

  • Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Edit 46:1222–1244. doi:10.1002/anie.200602866

    Article  CAS  Google Scholar 

  • Lu Y, Lu X, Mayers BT, Herricks T, Xia Y (2008) Synthesis and characterization of magnetic Co nanoparticles: a comparison study of three different capping surfactants. J Solid State Chem 181:1530–1538. doi:10.1016/j.jssc.2008.02.016

    Article  CAS  Google Scholar 

  • Luo YB, Yu QW, Yuan BF, Feng YQ (2012) Fast microextraction of phthalate acid esters from beverage, environmental water and perfume samples by magnetic multi-walled carbon nanotubes. Talanta 90:123–131. doi:10.1016/j.talanta.2012.01.015

    Article  CAS  Google Scholar 

  • Mascolo MC, Pei Y, Ring TA (2013) Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials 6:5549–5567. doi:10.3390/ma6125549

    Article  CAS  Google Scholar 

  • Mashhadizadeh MH, Amoli-Diva M, Pourghazi K (2013) Magnetic nanoparticles solid phase extraction for determination of ochratoxin A in cereals using high-performance liquid chromatography with fluorescence detection. J Chromatogr A 1320:17–26. doi:10.1016/j.chroma.2013.10.062

    Article  CAS  Google Scholar 

  • Mashhadizadeh MH, Amoli-Diva M, Shapouri MR, Afruzi H (2014) Solid phase extraction of trace amounts of silver, cadmium, copper, mercury, and lead in various food samples based on ethylene glycol bis-mercaptoacetate modified 3-(trimethoxysilyl)-1-propanethiol coated Fe3O4 nanoparticles. Food Chem 151:300–305. doi:10.1016/j.foodchem.2013.11.082

    Article  CAS  Google Scholar 

  • Mehdinia A, Shegefti S, Shemirani F (2015) A novel nanomagnetic task specific ionic liquid as a selective sorbent for the trace determination of cadmium in water and fruit samples. Talanta 144:1266–1272. doi:10.1016/j.talanta.2015.08.012

    Article  CAS  Google Scholar 

  • Mirabi A, Dalirandeh Z, Rad AS (2015) Preparation of modified magnetic nanoparticles as a sorbent for the preconcentration and determination of cadmium ions in food and environmental water samples prior to flame atomic absorption spectrometry. J Magn Magn Mater 381:138–144. doi:10.1016/j.jmmm.2014.12.071

    Article  CAS  Google Scholar 

  • Morales-Cid G, Fekete A, Simonet BM, Lehmann R, Cárdenas S, Zhang X, Valcárcel M, Schmitt-Kopplin P (2010) In situ synthesis of magnetic multiwalled carbon nanotube composites for the clean-up of (fluoro)quinolones from human plasma prior to ultrahigh pressure liquid chromatography analysis. Anal Chem 82:2743–2752. doi:10.1021/ac902631h

    Article  CAS  Google Scholar 

  • Naing NN, Li SFY, Lee HK (2016) Micro-solid phase extraction followed by thermal extraction coupled with gas chromatography-mass selective detector for the determination of polybrominated diphenyl ethers in water. J Chromatogr A 1458:25–34. doi:10.1016/j.chroma.2016.06.056

    Article  CAS  Google Scholar 

  • Najafi E, Aboufazeli F, Zhad HRLZ, Sadeghi O, Amani V (2013) A novel magnetic ion imprinted nano-polymer for selective separation and determination of low levels of mercury (II) ions in fish samples. Food Chem 141:4040–4045. doi:10.1016/j.foodchem.2013.06.118

    Article  CAS  Google Scholar 

  • Nickerson B, Colón I (2011) Liquid–liquid and solid-phase extraction techniques. In: Nickerson B (ed) Sample preparation of pharmaceutical dosage forms: challenges and strategies for sample preparation and extraction. Springer, pp. 63–92. doi: 10.1007/978-1-4419-9631-2_4

  • Pawliszyn J (2002) Sampling and sample preparation for field and laboratory: fundamentals and new directions in sample preparation, 1st edn. Elsevier, Amsterdam (Chapter 9)

    Google Scholar 

  • Piao C, Chen L (2012) Separation of Sudan dyes from chilli powder by magnetic molecularly imprinted polymer. J Chromatogr A 1268:185–190. doi:10.1016/j.chroma.2012.10.045

    Article  CAS  Google Scholar 

  • Pirouz MJ, Beyki MH, Shemirani F (2015) Anhydride functionalised calcium ferrite nanoparticles: a new selective magnetic material for enrichment of lead ions from water and food samples. Food Chem 170:131–137. doi:10.1016/j.foodchem.2014.08.046

    Article  CAS  Google Scholar 

  • Ramandi NF, Shemirani F (2015) Selective ionic liquid ferrofluid based dispersive-solid phase extraction for simultaneous preconcentration/separation of lead and cadmium in milk and biological samples. Talanta 131:404–411. doi:10.1016/j.talanta.2014.08.008

    Article  Google Scholar 

  • Ramandi NF, Shemirani F, Farahani MD (2014) Dispersive solid phase extraction of lead(II) using a silica nanoparticle-based ionic liquid ferrofluid. Microchim Acta 181:1833–1841. doi:10.1007/s00604-014-1254-1

    Article  Google Scholar 

  • Ríos A, Zougagh M, Bouri M (2013) Magnetic (nano)materials as an useful tool for sample preparation in analytical methods. A review. Anal Methods 5:4558–4573. doi:10.1039/c3ay40306h

    Article  Google Scholar 

  • Rocío-Bautista P, Pino V (2015) Extraction methods facilitated by the use of magnetic nanoparticles. In: Anderson JL, Berthod A, Pino EV, Stalcup AM (eds) Analytical separation. Wiley-VCH, Weinheim, pp 1681–1715

    Chapter  Google Scholar 

  • Samia ACS, Hyzer K, Schlueter JA, Qin CJ, Jiang S, Bader SD, Lin XM (2005) Ligand effects on the growth and digestion of Co nanocrystals. J Am Chem Soc 127:4126–4127. doi:10.1021/ja044419r

    Article  CAS  Google Scholar 

  • Shen HY, Zhu Y, Wen XE, Zhuang YM (2007) Preparation of Fe3O4-C18 nano-magnetic composite materials and their cleanup properties for organophosphorous pesticides. Anal Bioanal Chem 387:2227–2237. doi:10.1007/s00216-006-1082-1

    Article  CAS  Google Scholar 

  • Soylak M, Yilmaz E (2015) Determination of cadmium in fruit and vegetables by ionic liquid magnetic microextraction and flame atomic absorption spectrometry. Anal Lett 48:464–476. doi:10.1080/00032719.2014.949732

    Article  CAS  Google Scholar 

  • Sreeja V, Joy PA (2007) Microwave-hydrothermal synthesis of γ-Fe2O3 nanoparticles and their magnetic properties. Mater Res Bull 42:1570–1576. doi:10.1016/j.materresbull.2006.11.014

    Article  CAS  Google Scholar 

  • Wang X, Zhuang J, Peng Q, Li Y (2005) A general strategy for nanocrystal synthesis. Nature 437:121–124. doi:10.1038/nature03968

    Article  CAS  Google Scholar 

  • Wang B, Wei Q, Qu S (2013) Synthesis and characterization of uniform and crystalline magnetite nanoparticles via oxidation-precipitation and modified co-precipitation methods. Int J Electrochem Sci 8:3786–3793

    CAS  Google Scholar 

  • Wang L, Zang XH, Wang C, Wang Z (2014a) Research progress in application of graphene for sample preparation. Chinese J Anal Chem 42:136–144. doi:10.3724/SP.J.1096.2014.30538

    Article  Google Scholar 

  • Wang Y, Sun Y, Gao Y, Xu B, Wu Q, Zhang H, Song D (2014b) Determination of five pyrethroids in tea drinks by dispersive solid phase extraction with polyaniline-coated magnetic particles. Talanta 119:268–275. doi:10.1016/j.talanta.2013.11.007

    Article  CAS  Google Scholar 

  • Wang X, Chen J, Zhou Y, Liu X, Yao H, Ahmad F (2015) Dispersive liquid–liquid microextraction and micro-solid phase extraction for the rapid determination of metals in food and environmental waters. Anal Lett 48:1787–1801. doi:10.1080/00032719.2014.1002036

    Article  CAS  Google Scholar 

  • Wang X, Wu L, Cao J, Hong X, Ye R, Chen W, Yuan T (2016a) Magnetic effervescent tablet-assisted ionic liquid dispersive liquid–liquid microextraction of selenium for speciation in foods and beverages. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 33:1190–1199. doi:10.1080/19440049.2016.1189807

    Article  CAS  Google Scholar 

  • Wang J, Chen Z, Li Z, Yang Y (2016b) Magnetic nanoparticles based dispersive micro-solid-phase extraction as a novel technique for the determination of estrogens in pork samples. Food Chem 204:135–140. doi:10.1016/j.foodchem.2016.02.016

    Article  CAS  Google Scholar 

  • Wasserscheid P, Keim W (2000) Ionic liquids-new “solutions” for transition metal catalysis. Angew Chem Int Edit 39:3772–3789. doi:10.1002/1521-3773(20001103)39:21<3772::aid-anie3772>3.0.CO;2-5

    Article  CAS  Google Scholar 

  • Wierucka M, Biziuk M (2014) Application of magnetic nanoparticles for magnetic solid-phase extraction in preparing biological, environmental and food samples. TRAC-Trend Anal Chem 59:50–58. doi:10.1016/j.trac.2014.04.007

    Article  CAS  Google Scholar 

  • Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415. doi:10.1007/s11671-008-9174-9

    Article  CAS  Google Scholar 

  • Wu X, Hu J, Zhu B, Lu L, Huang X, Pang D (2011) Aptamer-targeted magnetic nanospheres as a solid-phase extraction sorbent for determination of ochratoxin A in food samples. J Chromatogr A 41:7341–7346. doi:10.1016/j.chroma.2011.08.045

    Article  Google Scholar 

  • Wu Q, Liu M, Ma X, Wang W, Wang C, Zang X, Wang Z (2012) Extraction of phthalate esters from water and beverages using a graphene-based magnetic nanocomposite prior to their determination by HPLC. Microchim Acta 177:23–30. doi:10.1007/s00604-011-0752-7

    Article  CAS  Google Scholar 

  • Xie L, Jiang R, Zhu F, Liu H, Ouyang G (2014) Application of functionalized magnetic nanoparticles in sample preparation. Anal Bioanal Chem 406:377–399. doi:10.1007/s00216-013-7302-6

    Article  CAS  Google Scholar 

  • Yang M, Wu X, Jia Y, Xi X, Yang X, Lu R, Zhang S, Gao H, Zhou W (2016) Use of magnetic effervescent tablet-assisted ionic liquid dispersive liquid-liquid microextraction to extract fungicides from environmental waters with the aid of experimental design methodology. Anal Chim Acta 906:118–127. doi:10.1016/j.aca.2015.12.019

    Article  CAS  Google Scholar 

  • Yangyang J, Chen G, Xia H, Mahmood I, Liu C, Liu H (2009) Magnetic nanoparticles supported ionic liquids for lipase immobilization: enzyme activity in catalyzing esterification. J Mol Catal B-Enzym 58:103–109. doi:10.1016/j.molcatb.2008.12.001

    Article  Google Scholar 

  • Yu X, Sun Y, Jiang CZ, Gao Y, Wang YP, Zhang HQ, Song DQ (2012) Magnetic solid-phase extraction and ultrafast liquid chromatographic detection of Sudan dyes in red wines, juices, and mature vinegars. J Sep Sci 35:3403–3411. doi:10.1002/jssc.201200555

    Article  CAS  Google Scholar 

  • Zhang Y, Xia C (2009) Magnetic hydroxyapatite-encapsulated γ-Fe2O3 nanoparticles functionalized with basic ionic liquids for aqueous Knoevenagel condensation. Appl Catal A-Gen 366:141–147. doi:10.1016/j.apcata.2009.06.041

    Article  CAS  Google Scholar 

  • Zhang Y, Liu R, Hu Y, Li G (2009) Microwave heating in preparation of magnetic molecularly imprinted polymer beads for trace triazines analysis in complicated samples. Anal Chem 81:967–976. doi:10.1021/ac8018262

    Article  CAS  Google Scholar 

  • Zhang X, Chen L, Xu Y, Wang H, Zeng Q, Zhao Q, Ren N, Ding L (2010) Determination of β-lactam antibiotics in milk based on magnetic molecularly imprinted polymer extraction coupled with liquid chromatography–tandem mass spectrometry. J Chromatogr B 878:3421–3426. doi:10.1016/j.jchromb.2010.10.030

    Article  CAS  Google Scholar 

  • Zhang S, Niu H, Zhang Y, Liu J, Shi Y, Zhang X, Cai Y (2012) Biocompatible phosphatidylcholine bilayer coated on magnetic nanoparticles and their application in the extraction of several polycyclic aromatic hydrocarbons from environmental water and milk samples. J Chromatogr A 1238:38–45. doi:10.1016/j.chroma.2012.03.056

    Article  CAS  Google Scholar 

  • Zhang L, Wu H, Liu Z, Gao N, Du L, Fu Y (2015) Ionic liquid-magnetic nanoparticle microextraction of safranin T in food samples. Food Anal Method 8:541–548. doi:10.1007/s12161-014-9927-2

    Article  CAS  Google Scholar 

  • Zhao Q, Wei F, Lou YB, Ding J, Xiao N, Feng YQ (2011) Rapid magnetic solid-phase extraction based on magnetic multiwalled carbon nanotubes for the determination of polycyclic aromatic hydrocarbons in edible oils. J Agr Food Chem 59:12794–12800. doi:10.1021/jf203973s

    Article  CAS  Google Scholar 

  • Zhao Q, Wei F, Xiao N, Yu QW, Yuan BF, Feng YQ (2012) Dispersive microextraction based on water-coated Fe3O4 followed by gas chromatography–mass spectrometry for determination of 3-monochloropropane-1,2-diol in edible oils. J Chromatogr A 1240:45–51. doi:10.1016/j.chroma.2012.03.090

    Article  CAS  Google Scholar 

  • Zhu AL, Jiang T, Wang D, Han B, Liu L, Huang J, Zhang J, Sun DH (2005) Direct aldol reactions catalyzed by 1,1,3,3-tetramethylguanidine lactate without solvent. Green Chem 7:514–517. doi:10.1039/b501925g

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.A.H.H. gratefully acknowledges the Consejo Nacional de Ciencia y Tecnologia (Mexico) for the scholarship received. G.A.A.R., E.C.L., K.A.A., and A.C.O. also thank Sistema Nacional de Investigadores for the stipend received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Araceli Castañeda-Ovando.

Ethics declarations

Funding

This study was funded by the Consejo Nacional de Ciencia y Tecnologia (Mexico) [project number CB-2013-220163].

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Hernández, A.A., Álvarez-Romero, G.A., Contreras-López, E. et al. Food Analysis by Microextraction Methods Based on the Use of Magnetic Nanoparticles as Supports: Recent Advances. Food Anal. Methods 10, 2974–2993 (2017). https://doi.org/10.1007/s12161-017-0863-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-017-0863-9

Keywords

Navigation