Skip to main content
Log in

Voltammetric Sensor for the Determination of TBHQ in Coconut Oil

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

A sensitive voltammetric method for the determination of tert-butylhydroquinone (TBHQ), a widely used synthetic phenolic antioxidant in oils and fats, using multiwalled carbon nanotube modified gold electrode (MWCNT/GE) was developed. In 0.10 M phosphate buffer solution (PBS) of pH 2, TBHQ gave redox peaks at E pa = 258 mV and E pc = 228 mV on MWCNT/GE. Diffusion-controlled electrooxidation of TBHQ was found to be perfectly reversible with the involvement of two electrons and two protons. The anodic peak currents varied linearly with concentrations of TBHQ in the range 4.0 × 10−6 to 1.00 × 10−4 M. The limit of detection achieved for the developed sensor was 3.20 × 10−8 M (5.31 ng mL−1). Developed sensor was used for the determination of TBHQ in commercially available coconut oil. The results obtained from the developed method were in good agreement with the standard method (HPLC-UV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andrea C, Castanheira I, Cruz JM, Paseiro P, Silva A (2010) Analytical strategies to evaluate antioxidants in food. Trends Food Sci Technol 21:229–246

    Article  Google Scholar 

  • Anson F, Huang WZ, Gao XX (1983) Electrochemistry and electroanalytical chemistry. Beijing University Press, Beijing

    Google Scholar 

  • Araujo TA, Barbosa AMJ, Viana LH, Ferreira VS (2011) Electroanalytical determination of TBHQ, a synthetic antioxidant, in soybean biodiesel samples. Fuel 90:707–712

    Article  Google Scholar 

  • Balasubramanian K, Burghard M (2008) Electrochemically functionalized carbon nanotubes for device applications. J Math Chem 18:3071–3083

    Article  CAS  Google Scholar 

  • Bond AM (1980) Modern polarographic methods in analytical chemistry. Marcel Dekker, New York

    Google Scholar 

  • Britto PJ, Santhanam KSV, Ajayan PM (1996) Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem Bioenerg 41:121–125

    Article  CAS  Google Scholar 

  • Caramit RP, Andrade AGF, Souza JBG, Araujo TA, Viana LH, Trindade MAG, Ferreira VS (2013) A new voltammetric method for the simultaneous determination of the antioxidants TBHQ and BHA in biodiesel using multi walled carbon nanotube screen printed electrodes. Fuel 105:306–313

    Article  CAS  Google Scholar 

  • Chandran S, Lonappan LA, Thomas D, Jos T, Kumar KG (2014) Development of an electrochemical sensor for the determination of amaranth: a synthetic dye in soft drinks. Food Anal Methods 7:741–746

    Article  Google Scholar 

  • Cortes AG, Armisen P, Ruiz MA, Sedeno PY, Pingarron JM (1994) Electroanalytical study of the antioxidant tert-butylhydroquinone in an oil in water emulsified medium. Electroanalysis 6:1014–1019

    Article  Google Scholar 

  • Crompton TR (1979) Additive migration from plastics into food. Pergamon Press, London

    Google Scholar 

  • De la Fuente C, Acuna JA, Vazquez MD, Tascon LM, Batanero PS (1999) Voltammetric determination of the phenolic antioxidants 3-tert-butyl-4-hydroxyanisole and tert-butylhydroquinone at a polypyrrole electrode modified with a nickel phthalocyanine complex. Talanta 49:441–452

    Article  Google Scholar 

  • Gan T, Sun J, Cao S, Gao F, Zhang Y, Yang Y (2012) One step electrochemical approach for the preparation of graphene wrapped-phosphotungstic acid hybrid and its application for simultaneous determination of sunset yellow and tartrazine. Electrochim Acta 74:151–157

    Article  CAS  Google Scholar 

  • Gharavi N, Haggarty S, Ayman OS (2007) Chemoprotective and carcinogenic effects of tert-butylhydroquinone and its metabolites. Curr Drug Metab 8:1–7

    Article  CAS  Google Scholar 

  • Ghoreishi SM, Behpour M, Golestaneh M (2012) Simultaneous determination of sunset yellow and tartrazine in soft drinks using gold nanoparticles carbon paste electrode. Food Chem 132:637–641

    Article  CAS  Google Scholar 

  • Gonzalez M, Ballesteros E, Gallego M, Varcarcel M (1998) Continuous flow determination of natural and synthetic antioxidants in foods by gas chromatography. Anal Chim Acta 359:47–55

    Article  CAS  Google Scholar 

  • Goulart LA, Teixeira ARL, Ramalho DA, Terezo AJ, Castilho M (2014) Development of an analytical method for the determination of tert-butylhydroquinone in soybean biodiesel. Fuel 115:126–131

    Article  CAS  Google Scholar 

  • Gryger T, Marken F, Schroder U, Scholz F (2002) Electrochemical analysis of solids. Collect Czechoslov Chem Commun 67:163–208

    Article  Google Scholar 

  • Guan Y, Chu Q, Fu L, Wu T, Ye J (2006) Determination of phenolic antioxidants by micellar electrokinetic capillary chromatography with electrochemical detection. Food Chem 94:157–162

    Article  CAS  Google Scholar 

  • Guo L, Xie MY, Yan AP, Wan YQ, Wu YM (2006) Simultaneous determination of five synthetic antioxidants in edible vegetable oil by GC–MS. Anal Bioanal Chem 386:1881–1887

    Article  CAS  Google Scholar 

  • Issac S, Kumar KG (2009) Voltammetric determination of sulfamethoxazole at a multiwalled carbon nanotube modified glassy carbon sensor and its application studies. Drug Test Anal 1:350–354

    Article  CAS  Google Scholar 

  • Jos T, Issac S, Joseph R, Rajith L, Kumar KG (2012) Electrocatalysis and determination of pyridine-2-aldoxime methochloride using carbon nanotube modified gold electrode. Micro Nano Lett 7:854–858

    Article  Google Scholar 

  • Li XQ, Ji C, Sun YY, Li YM, Chu XG (2009) Analysis of synthetic antioxidants and preservatives in edible vegetable oil by HPLC/TOF-MS. Food Chem 113:692–700

    Article  CAS  Google Scholar 

  • Lin X, Ni Y, Kokot S (2013) Glassy carbon electrodes modified with gold nanoparticles for the simultaneous determination of three food antioxidants. Anal Chim Acta 765:54–62

    Article  CAS  Google Scholar 

  • Lonappan L, Issac S, Joseph R, Thomas D, Kumar KG (2011) Electrochemical studies of TAM using multiwalled carbon nanotube modified glassy carbon sensor. Micro Nano Lett 6:867–870

    Article  CAS  Google Scholar 

  • Randles JEB (1948) Cathode ray polarograph. Trans Faraday Soc 44:322–327

    Article  CAS  Google Scholar 

  • Rasheed Z, Vikraman AE, Thomas D, Jagan JS, Kumar KG (2014) Carbon nanotube based sensor for the determination of butylated hydroxyanisole in food samples. Food Anal Methods. doi:10.1007/s12161-014-9894-7

    Google Scholar 

  • Robards K, Dilli S (1987) Analytical chemistry of synthetic food antioxidants. Analyst 112:933–943

    Article  CAS  Google Scholar 

  • Saad B, Sing YY, Nawi MA, Hashim N, Ali ASM, Saleh MI (2007) Determination of synthetic phenolic antioxidants in food items using reversed-phase HPLC. Food Chem 105:389–394

    Article  CAS  Google Scholar 

  • Shahidi F (2000) Antioxidants in food and food antioxidants. Nahrung 44:158–163

    Article  CAS  Google Scholar 

  • Summary of evaluations performed by the Joint FAO/WHO Expert Committee on Food Additives (JECFA 1956–2007). [http://jecfa.ilsi.org/index.htm, www.efsa.europa.eu, www.fao.org]

  • Tagliabue S, Gasparoli A, Bella DL, Bondioli P (2004) Quali-quantitative determination of synthetic antioxidants in biodiesel. Riv Ital Sostanze Grasse 80:37–40

    Google Scholar 

  • Thomas D, Rajith L, Lonappan L, Issac S, Kumar KG (2012) Sensitive determination of nitrite in food samples. Food Anal Methods 5:752–758

    Article  Google Scholar 

  • Tsang SC, Chen YK, Harris PJE, Green MLH (1994) A simple chemical method of opening and filling carbon nanotubes. Nature 372:159–161

    Article  CAS  Google Scholar 

  • Vikraman AE, Rasheed Z, Rajith L, Lonappan LA, Kumar KG (2013) MWCNT-modified gold electrode sensor for the determination of propyl gallate in vegetable oils. Food Anal Methods 6:775–780

    Article  Google Scholar 

  • Wang MY, Zhang DE, Tong ZW, Xu XY, Yang XJ (2011) Voltammetric behavior and the determination of quercetin at a flowerlike Co3O4 nanoparticles modified glassy carbon electrode. J Appl Electrochem 41:189–196

    Article  Google Scholar 

  • Xu JZ, Zhu JJ, Wu Q, Hu Z, Zhen HY (2003) An amperometric biosensor based on the coimmobilisation of horseradish peroxidase and methylene blue on a carbon nanotubes modified electrode. Electroanalysis 15:219–224

    Article  CAS  Google Scholar 

  • Zhao Q, Gan Z, Zhuang Q (2002) Electrochemical sensors based on carbon nanotubes. Electroanalysis 14:1609–1613

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Defence Research and Development Organisation (DRDO), the Government of India for the financial assistance in the form of a research project to carry out this work. Krishnapillai Girish Kumar has received research grant from DRDO, Government of India.

Conflict of interest

Ambily Thomas declares that she has no conflict of interest. Anuja Elevathoor Vikraman declares that she has no conflict of interest. Divya Thomas declares that she has no conflict of interest. This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnapillai Girish Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, A., Vikraman, A.E., Thomas, D. et al. Voltammetric Sensor for the Determination of TBHQ in Coconut Oil. Food Anal. Methods 8, 2028–2034 (2015). https://doi.org/10.1007/s12161-015-0092-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-015-0092-z

Keywords

Navigation