Skip to main content
Log in

Detection of Urea Adulteration in Milk Using Near-Infrared Raman Spectroscopy

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

We report results of a spectroscopic study to assess the applicability of near-infrared Raman spectroscopy for quantitative determination of urea adulteration in milk without any preprocessing requirement. Different batches of milk adulteration were prepared with each batch containing milk samples added with urea at various concentrations ranging from 10 to 1,000 mg/dl. The Raman spectra were measured from these urea-mixed milk samples with a Raman spectroscopy setup that incorporates a 785-nm diode laser for Raman excitation. An algorithm based on partial least square (PLS) regression was developed to quantitatively predict the concentration of urea based on the measured sets of Raman spectra of the urea-mixed milk samples. The results showed that Raman spectroscopy in combination with the PLS-based chemometric algorithm could detect urea mixed in milk samples with an accuracy of >90 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barbano DM, Clark JL (1989) Infrared milk analysis—challenges for the future. J Dairy Sci 72(6):1627–1636

    Article  CAS  Google Scholar 

  • Barnes RJ, Dhanoa MS, Lister SJ (1989) Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl Spectrosc 43(5):772–777

    Article  CAS  Google Scholar 

  • Chao K, Qin J, Kim MS, Mo CY (2011) A Raman chemical imaging system for detection of contaminants in food. Proc SPIE 8027:1–10

    Google Scholar 

  • Cheng Y, Dong Y, Wu J, Yang X, Bai H, Zheng H, Ren D, Zou Y, Li M (2010) Screening melamine adulterant in milk powder with laser Raman spectrometry. J Food Comp Anal 23(2):199–202

    Article  CAS  Google Scholar 

  • Danzer K, Currie LA (1998) Guidelines for calibration in analytical chemistry Part 1. Fundamentals and single component calibration. Pure Appl Chem 70(4):993–1014

    Article  CAS  Google Scholar 

  • Dhawan G, Sumana G, Malhotra BD (2009) Recent developments in urea biosensors. Biochem Eng J 44(1):42–52

    Article  CAS  Google Scholar 

  • El-Abassy RM, Eravuchira PJ, Donfack P, von der Kammer B, Materny A (2010) Fast determination of milk fat content using Raman spectroscopy. Vib Spectrosc 56(1):3–8

    Article  Google Scholar 

  • El-Abassy RM, Eravuchira PJ, Donfack P, von der Kammer B, Materny A (2012) Direct determination of unsaturation level of milk fat using Raman spectroscopy. Appl Spectrosc 66(5):538–544

    Article  CAS  Google Scholar 

  • Ellis DI, Brewster VL, Dunn WB, Allwood JW, Golovanov AP, Goodacre R (2012) Fingerprinting food: current technologies for the detection of food adulteration and contamination. Chem Soc Rev 41(17):5706–5727

    Article  CAS  Google Scholar 

  • Francis PS, Lewis SW, Lim KF (2002) Analytical methodology for the determination of urea: current practice and future trends. Trends Anal Chem 21(5):389–400

    Article  CAS  Google Scholar 

  • Geladi P, Kowalski BR (1986) Partial least-squares regression—a tutorial. Anal Chim Acta 185:1–17

    Article  CAS  Google Scholar 

  • Haaland DM, Thomas EV (1988) Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Anal Chem 60(11):1193–1202

    Article  CAS  Google Scholar 

  • Hansen PW (1998) Urea determination in milk using Fourier transform infrared spectroscopy and multivariate calibration. Milchwissenschaft 53(5):251–255

    CAS  Google Scholar 

  • http://cseindia.org/content/adulterated-milk-what-indians-are-drinking

  • Jehlicka J, Edwards HGM, Culka A (2010) Using portable Raman spectrometers for the identification of organic compounds at low temperatures and high altitudes: exobiological applications. Phil Trans R Soc A 368(1922):3109–3125

    Article  CAS  Google Scholar 

  • Jenkins DM, Delwiche MJ, DePeters EJ, Bondurant RH (1999) Chemical assay of urea for automated sensing in milk. J Dairy Sci 82(9):1999–2004

    Article  CAS  Google Scholar 

  • Keuleers R, Desseyn HO, Rousseau B, Alsenoy CV (1999) Vibrational analysis of urea. J Phys Chem A 103(24):4621–4630

    Article  CAS  Google Scholar 

  • Khan KM, Krishna H, Majumder SK, Rao KD, Gupta PK (2014) Depth-sensitive Raman spectroscopy combined with optical coherence tomography for layered tissue analysis. J Biophot 7(1–2):77–85

    Article  CAS  Google Scholar 

  • Kohn RA, Kalscheur KF, Russek-Cohen E (2002) Evaluation of models to estimate urinary nitrogen and expected milk urea nitrogen. J Dairy Sci 85(1):227–233

    Article  CAS  Google Scholar 

  • Krishna H, Majumder SK, Gupta PK (2013) Range-independent background subtraction algorithm for recovery of Raman spectra of biological tissue. J Raman Spectrosc 43(12):1884–1894

    Article  Google Scholar 

  • Kumar H, Kumar A, Kumari P, Jyotirmai S, Tulsani NB (2000) A rapid estimation of urea in adulterated milk using dry reagent strip. Indian J Chem Tech 7:146–147

    CAS  Google Scholar 

  • Levitskaia TG, Bryan SA, Creim JA, Curry TL, Luders T, Thrall KD, James M, Peterson JM (2012) Optical spectroscopy and multivariate analysis for biodosimetry and monitoring of radiation injury to the skin. Drug Develop Res 73(5):255–273

    Article  Google Scholar 

  • Li-Chan ECY (1996) The applications of Raman spectroscopy in food science. Trends Food Sci Tech 7(11):361–370

    Article  CAS  Google Scholar 

  • Lima JLFC, Matos CD, Vaz MCVF (1998) Flow injection system with potentiometric detection for the determination of urea content in milks. J Agric Food Chem 46(4):1386–1389

    Article  CAS  Google Scholar 

  • Lima MJR, Fernandes SMV, Rangel AOSS (2004) Enzymatic determination of urea in milk by sequential injection with spectrophotometric and conductometric detection. J Agric Food Chem 52(23):6887–6890

    Article  CAS  Google Scholar 

  • Luzzana M, Giardino R (1999) Urea determination in milk by a differential pH technique. Lait 79(2):261–267

    Article  CAS  Google Scholar 

  • McGoverin CM, Clark ASS, Holroyd SE, Gordon KC (2010) Raman spectroscopic quantification of milk powder constituents. Anal Chim Acta 673(1):26–32

    Article  CAS  Google Scholar 

  • Mishra GK, Mishra RK, Bhand S (2010) Flow injection analysis biosensor for urea analysis in adulterated milk using enzyme thermistor. Biosens Bioelectron 26(4):1560–1564

    Article  CAS  Google Scholar 

  • Paradkar MM, Singhal RS, Kulkarni PR (2000) An approach to the detection of synthetic milk in dairy milk: 1. Detection of urea. Int J Dairy Technol 53(3):87–91

    Article  CAS  Google Scholar 

  • Pelletier MJ (2003) Quantitative analysis using Raman spectrometry. Appl Spectrosc 57(1):20A–42A

    Article  CAS  Google Scholar 

  • Qin J, Chao K, Kim MS (2013) Simultaneous detection of multiple adulterants in dry milk using macro-scale Raman chemical imaging. Food Chem 138(2–3):998–1007

    Article  CAS  Google Scholar 

  • Qin J, Chao K, Kim MS, Lee H, Peng Y (2014) Development of a Raman chemical imaging detection method for authenticating skim milk powder. Food Meas. doi:10.1007/s11694-014-9172-9

    Google Scholar 

  • Reid LM, O′Donnell CP, Downey G (2006) Recent technological advances for the determination of food authenticity. Trends Food Sci Tech 17(7):344–353

    Article  CAS  Google Scholar 

  • Sadat A, Mustajab P, Khan IA (2006) Determining the adulteration of natural milk with synthetic milk using ac conductance measurement. J Food Eng 77(3):472–477

    Article  CAS  Google Scholar 

  • Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least square procedures. Anal Chem 36(8):1627–1639

    Article  CAS  Google Scholar 

  • Schulz H (2008) In: Sun DW (ed) Modern techniques for food authentication, 1st edn. New York, Elsevier

    Google Scholar 

  • Sharma R, Rajput YS, Kaur S, Tomar SK (2008) A method for estimation of urea using ammonia electrode and its applicability to milk samples. J Dairy Res 75(4):466–470

    Article  CAS  Google Scholar 

  • Singh M, Verma N, Garg AK, Redhu N (2008) Urea biosensors. Sensor Actuat B-Chem 134(1):345–351

    Article  CAS  Google Scholar 

  • Trivedi UB, Lakshminarayana D, Kothari IL, Patel NG, Kapse HN, Makhija KK, Patel PB, Panchal CJ (2009) Potentiometric biosensor for urea determination in milk. Sensor Actuat B-Chem 140(1):260–266

    Article  CAS  Google Scholar 

  • Wang W, Paliwal J (2007) Near-infrared spectroscopy and imaging in food quality and safety. Sens Instrumen Food Qual 1(4):193–207

    Article  Google Scholar 

Download references

Conflict of Interest

Khan Mohammad Khan declares that he has no conflict of interest. Hemant Krishna declares that he has no conflict of interest. Shovan K. Majumder declares that he has no conflict of interest. Pradeep K. Gupta declares that he has no conflict of interest. Further, this article does not contain any studies with human and animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shovan Kumar Majumder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, K.M., Krishna, H., Majumder, S.K. et al. Detection of Urea Adulteration in Milk Using Near-Infrared Raman Spectroscopy. Food Anal. Methods 8, 93–102 (2015). https://doi.org/10.1007/s12161-014-9873-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-014-9873-z

Keywords

Navigation