Skip to main content
Log in

Autonomic Cardiovascular Control and Executive Function in Chronic Hypotension

  • Original Article
  • Published:
Annals of Behavioral Medicine

Abstract

Background

Chronic low blood pressure (hypotension) is characterized by complaints such as fatigue, reduced drive, dizziness, and cold limbs. Additionally, deficits in attention and memory have been observed. Autonomic dysregulation is considered to be involved in the origin of this condition.

Purpose

The study explored autonomic cardiovascular control in the context of higher cognitive processing (executive function) in hypotension.

Methods

Hemodynamic recordings were performed in 40 hypotensive and 40 normotensive participants during execution of four classical executive function tasks (number-letter task, n-back task, continuous performance test, and flanker task). Parameters of cardiac sympathetic control, i.e., stroke volume, cardiac output, pre-ejection period, total peripheral resistance, and parasympathetic control, i.e., respiratory sinus arrhythmia and baroreflex sensitivity, were obtained.

Results

The hypotensive group exhibited lower stroke volume and cardiac output, as well as higher pre-ejection period and baroreflex sensitivity during task execution. Increased error rates in hypotensive individuals were observed in the n-back and flanker tasks. In the total sample, there were positive correlations of error rates with pre-ejection period, baroreflex sensitivity and respiratory sinus arrhythmia, and negative correlations with cardiac output.

Conclusions

Group differences in stroke volume, cardiac output, and pre-ejection period suggest diminished beta-adrenergic myocardial drive during executive function processing in hypotension, in addition to increased baroreflex function. Although further research is warranted to quantify the extent of executive function impairment in hypotension, the results from correlation analysis add evidence to the notion that higher sympathetic inotropic influences and reduced parasympathetic cardiac influences are accompanied by better cognitive performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. De Buyzere M, Clement DL, Duprez D. Chronic low blood pressure: a review. Cardiovasc Drug Ther. 1998; 12: 29–35.

    Article  CAS  Google Scholar 

  2. Duschek S, Schandry R. Reduced brain perfusion and cognitive performance due to essential hypotension. Clin Auton Res. 2007; 17: 69–76.

    Article  PubMed  Google Scholar 

  3. Duschek S, Dietel A, Schandry R, Reyes del Paso GA. Increased sensitivity to heat pain in chronic low blood pressure. Eur J Pain. 2009; 13: 28–34.

    Article  PubMed  Google Scholar 

  4. Weisz N, Schandry R, Jacobs A, Mialet J, Duschek S. Early contingent negative variation of the EEG and attentional flexibility are reduced in hypotension. International J Psychophysiol. 2002; 45: 253–60.

    Article  Google Scholar 

  5. Duschek S, Matthias E, Schandry R. Essential hypotension is accompanied by deficits in attention and working memory. Behav Med. 2005; 30: 149–158.

    Article  PubMed  Google Scholar 

  6. WHO. Arterial hypertension. Technical Report Series No. 628. Genova: World Health Organisation; 1978.

  7. Covassin N, de Zambotti M, Cellini N, Sarlo M, Stegagno L. Cardiovascular down-regulation in essential hypotension: relationships with autonomic control and sleep. Psychophysiology. 2013; 50: 767–776.

    Article  PubMed  Google Scholar 

  8. Duschek S, Heiss H, Buechner B, Werner NS, Schandry R, Reyes del Paso GA. Hemodynamic determinants of chronic hypotension and their modification through vasopressor application. J Physiol Sci. 2009; 59: 105–112.

    Article  PubMed  Google Scholar 

  9. Covassin N, de Zambotti M, Cellini N, Sarlo M, Stegagno L. Nocturnal cardiovascular activity in essential hypotension: evidence of differential autonomic regulation. Psychosom Med. 2012; 74: 952–960.

    Article  CAS  PubMed  Google Scholar 

  10. de Zambotti M, Covassin N, Cellini N, Sarlo M, Torre J, Stegagno L. Hemodynamic and autonomic modifications during sleep stages in young hypotensive women. Biol Psychol. 2012; 91: 22–27.

    Article  PubMed  Google Scholar 

  11. Hassan S, Turner, P. Systolic time intervals: a review of the method in the non-invasive investigation of cardiac function in health, disease and clinical pharmacology. Postgrad Med J. 1983; 59: 423–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Malliani A, Pagani, M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation. 1991; 84: 482–492.

    Article  CAS  PubMed  Google Scholar 

  13. Reyes del Paso GA, Langewitz W, Mulder LJM, van Roon A, Duschek S. The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: a review with emphasis on a re-analysis of previous studies. Psychophysiology. 2013; 50: 477–487.

    Article  PubMed  Google Scholar 

  14. Berntson GG, Quigley KS, Lozano D. Cardiovascular psychophysiology. In: Cacioppo JT, Tassinary LG, Berntson GG, eds. Handbook of Psychophysiology. Cambridge: Cambridge University Press; 2007: 182–210.

    Chapter  Google Scholar 

  15. Duschek S, Dietel A, Schandry R, Reyes del Paso GA. Increased baroreflex sensitivity and reduced cardiovascular reactivity in chronic low blood pressure. Hypertens Res. 2008; 31: 1873–1878.

    Article  PubMed  Google Scholar 

  16. Reyes del Paso GA, Langewitz W, Robles H, Perez N. A between-subjects comparison of respiratory sinus arrythmia and baroreceptor cardiac reflex sensitivity as non-invasive measures of tonic parasympathetic cardiac control. Int J Psychophysiol. 1996; 22: 163–171.

    Article  Google Scholar 

  17. Levy MN, Pappano AJ. Cardiovascular Physiology. Philadelphia: Mosby Elsevier; 2007.

    Google Scholar 

  18. Stegagno L, Angrilli A, Costa M, Palomba D. Deficit cognitivi e ipotensione arteriosa: un´ indagine cronopsycofisiologica. Giornale Italiano di Psicologia. 1996; 23: 837–859.

    Google Scholar 

  19. Duschek S, Weisz N, Schandry R. Reduced cognitive performance and prolonged reaction time accompany moderate hypotension. Clin Auton Res. 2003; 3: 427–432.

    Google Scholar 

  20. Duschek S, Meinhardt J, Schandry R. Reduced cortical activity due to chronic low blood pressure: an EEG study. Biol Psychol. 2006; 72: 241–250.

    Article  PubMed  Google Scholar 

  21. Duschek S, Schandry R. Cognitive performance and cerebral blood flow in essential hypotension. Psychophysiology. 2004; 41: 905–913.

    Article  PubMed  Google Scholar 

  22. Costa M, Stegagno L, Schandry R, Bitti, PER. Contingent negative variation and cognitive performance in hypotension. Psychophysiology. 1998; 35: 737–744.

    Article  CAS  PubMed  Google Scholar 

  23. Duschek S, Schandry R. Deficient adjustment of cerebral blood flow to cognitive activity due to chronically low blood pressure. Biol Psychol. 2006; 72: 311–317.

    Article  PubMed  Google Scholar 

  24. Sarlo M, de Zambotti M, Gallicchio G, Devigili A, Stegagno L. Impaired cerebral and systemic hemodynamics under cognitive load in young hypotensives: a transcranial Doppler study. J Behav Med. 2013; 36: 134–142.

    Article  PubMed  Google Scholar 

  25. Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cognitive Psychol. 2000; 41: 49–100.

    Article  CAS  Google Scholar 

  26. Zahn D, Adams J, Krohn J, Wenzel M, Mann CG, Gomille LK, Jacobi-Scherbening V, Kubiak T. Heart rate variability and self-control—a meta-analysis. Biol Psychol. 2016; 115: 9–26.

    Article  PubMed  Google Scholar 

  27. Duschek S, Muckenthaler M, Reyes del Paso GA. Relationships between features of cardiovascular control and cognitive performance. Biol Psychol. 2009; 81: 110–117.

    Article  PubMed  Google Scholar 

  28. Reyes del Paso GA, González MI, Hernández JA, Duschek S, Gutiérrez N. Tonic blood pressure modulated the relationship between baroreceptor cardiac reflex sensitivity and cognitive performance. Psychophysiology. 2009: 46: 932–938.

    Article  Google Scholar 

  29. Duschek S, Wörsching J, Reyes del Paso GA. Interactions between autonomic cardiovascular regulation and cortical activity: a CNV study. Psychophysiology. 2013; 50: 388–397.

    Article  PubMed  Google Scholar 

  30. Duschek S, Werner NS, Reyes del Paso GA. The behavioral impact of baroreflex function: a review. Psychophysiology. 2013; 50: 1183–1193.

    Article  PubMed  Google Scholar 

  31. Reyes del Paso GA, González MI, Hernández JA. Comparison of baroreceptor cardiac reflex sensitivity estimates from inter-systolic and ECG R-R intervals. Psychophysiology. 2010: 47: 1102–1108.

    Google Scholar 

  32. Rogers RD, Monsell S. Costs of a predictable switch between simple cognitive tasks. J Experiment Psychol Gen. 1995; 124: 207–231.

    Article  Google Scholar 

  33. Jonides J, Smith EE. The architecture of working memory. In: Rugg MD, ed. Cognitive Neuroscience. Cambridge: MIT Press; 1997: 243–276.

    Google Scholar 

  34. Cornblatt BA, Risch NJ, Faris G, Friedman D, Erlenmeyer-Kimling L. The continuous performance test, identical pairs version (CPT-IP): I. New findings about sustained attention in normal families. Psychiatry Res. 1988; 26: 223–238.

    Article  CAS  PubMed  Google Scholar 

  35. Eriksen BA, Eriksen CW. Effects of noise letters upon identification of a target letter in a non-search task. Percept Psychophys. 1974; 16:143149.

    Article  Google Scholar 

  36. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1997; 9: 97–113.

    Article  Google Scholar 

  37. Raaijmakers E, Faes TJ, Scholten RJ, Goovaerts HG, Heethaar RM. A meta-analysis of published studies concerning the validity of thoracic impedance cardiography. Ann N Y Acad Sci. 1999; 873:121–127.

    Article  CAS  PubMed  Google Scholar 

  38. Parati G, Ongaro G, Bilo G, Glavina F, Castiglioni P, Di Rienzo M, Mancia G. Non-invasive beat-to-beat blood pressure monitoring: new developments. Blood Press Monit. 2003; 8: 31–36.

    Article  PubMed  Google Scholar 

  39. Niskanen JP, Tarvainen MP, Ranta-aho PO, Karjalainen PA. Software for advanced HRV analysis. Comput Meth Prog Bio. 2004; 76: 73–81.

    Article  Google Scholar 

  40. Denver JW, Reed SF, Porges SW. Methodological issues in the quantification of respiratory sinus arrhythmia. Biol Psychol. 2007; 74: 286–294.

    Article  PubMed  Google Scholar 

  41. Reyes del Paso GA. A program to assess baroreceptor cardiac reflex function. Behav Res Methods. 1994; 26: 62–64.

    Article  Google Scholar 

  42. Steptoe A, Vögele C. Cardiac baroreceptor reflex function during postural change assessed using non-invasive spontaneous sequence analysis in young men. Cardiovasc Res. 1990; 24: 627–632.

    Article  CAS  PubMed  Google Scholar 

  43. Parlow J, Viale JP, Annat G, Hughson R, Quintin L. Spontaneous cardiac baroreflex in humans: comparison with drugs-induced responses. Hypertension. 1995; 25: 1058–1068.

    Article  CAS  PubMed  Google Scholar 

  44. Rosseel I. Lavaan: an R package for structural equation modeling. J Stat Softw. 2012; 48: 1–36.

    Article  Google Scholar 

  45. Kenny J, Plappert T, Doubilet P, Salzman D, Sutton M. Effects of heart rate on ventricular size, stroke volume, and output in the normal human fetus: a prospective Doppler echocardiographic study. Circulation. 1987; 76: 52–58.

    Article  CAS  PubMed  Google Scholar 

  46. Stegagno L, Patritti D, Duschek S, Herbert B, Schandry R. Cerebral blood flow in essential hypotension during emotional activation. Psychophysiology. 2007; 44: 226–232.

    Article  PubMed  Google Scholar 

  47. Schuepbach D, Boeker H, Duschek S, Hell D. Rapid cerebral hemodynamic modulation during mental planning and movement execution: evidence of time-locked relationship with complex behavior. Clin Neurophysiol. 2007; 118: 2254–2262.

    Article  PubMed  Google Scholar 

  48. Duschek S, Schuepbach D, Schandry R. Time-locked association between rapid cerebral blood flow modulation and attentional performance. Clin Neurophysiol. 2008; 119: 1292–1299.

    Article  CAS  PubMed  Google Scholar 

  49. Duschek S, Heiss H, Schmidt FH, Werner N, Schuepbach D. Interactions between systemic hemodynamics and cerebral blood flow during attentional processing. Psychophysiology. 2010; 47: 1159–1166

    PubMed  Google Scholar 

  50. Duschek S, Reyes del Paso GA. Quantification of cardiac baroreflex function at rest and during autonomic stimulation. J Physiol Sci. 2007; 57: 259–268.

    Article  PubMed  Google Scholar 

  51. Carthy ER. Autonomic dysfunction in essential hypertension: a systematic review. Ann Med Surg. 2013; 3: 2–7.

    Article  Google Scholar 

  52. Ducher M, Fauvel JP, Cerrutti C. Risk profile in hypertension genesis: a five-year follow-up study. Am J Hypertens. 2006; 19: 775–781.

    Article  PubMed  Google Scholar 

  53. Duschek S, Wörsching J, Reyes del Paso GA. Autonomic cardiovascular regulation and cortical tone. Clin Physiol Func Imaging. 2013; 35: 383–392.

    Article  Google Scholar 

  54. Friedman NP, Miyake A. The relations among inhibition and interference control functions: a latent-variable analysis. J Exp Psychol Gen. 2004; 133: 101–115.

    Article  PubMed  Google Scholar 

  55. Chmura J, Nazar K, Kaciuba-Uscilko H. Choice reaction time during graded exercise in relation to blood lactate and plasma catecholamine thresholds. Int J Sports Med. 1994; 15: 172–176.

    Article  CAS  PubMed  Google Scholar 

  56. Yagi Y, Coburn KL, Estes KM, Arruda JE. Effects of aerobic exercise and gender on visual and auditory P300, reaction time, and accuracy. Eur J Appl Physiol. 1999; 80: 402–408.

    Article  CAS  Google Scholar 

  57. Duschek S, Hadjamu M, Schandry R. Enhancement of cerebral blood flow and cognitive performance due to pharmacological blood pressure elevation in chronic hypotension. Psychophysiology. 2007; 44: 145–53.

    Article  PubMed  Google Scholar 

  58. Duschek, S., Hadjamu, M. & Schandry, R.. Dissociation between cortical activation and cognitive performance in the pharmacological treatment of chronic hypotension. Biol Psychol. 2007; 75: 277–85.

    Article  PubMed  Google Scholar 

  59. Esteban-Cornejo I, Tejero-Gonzalez C, Sallis JF, Veiga OL. Physical activity and cognition in adolescents: a systematic review. J Sci Med Sport. 2015; 18: 534–539.

    Article  PubMed  Google Scholar 

  60. Sharma S, Merghani A, Mont L. Exercise and the heart: the good, the bad, and the ugly. Eur Heart J. 2015;36:1445–1553.

    Article  PubMed  Google Scholar 

  61. Duschek S, Heiss H, Werner N, Reyes del Paso GA. Modulations of autonomic cardiovascular control following alpha-adrenergic treatment in chronic hypotension. Hypertens Res. 2009; 32: 938–943.

    Article  CAS  PubMed  Google Scholar 

  62. Reyes del Paso GA, González MI. Modification of baroreceptor cardiac reflex function by biofeedback. Appl Psychophysiol Biofeedback. 2004; 29: 197–211.

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by the Anniversary Fund of the Austrian National Bank (project 16289). We are grateful to Maximilian Stefani, Angela Bair, Revan Karaca, and Marlon Klein for their help with acquisition of participants and data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Duschek PhD.

Ethics declarations

Conflicts of Interest

The authors Stefan Duschek, Alexandra Hoffmann, Gustavo A. Reyes del Paso, and Ulrich Ettinger declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amends of comparable ethical standards.

The study was approved by the Board for Ethical Questions in Science of the University of Innsbruck, Austria. Informed consent was obtained from all individual participants included in the study.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duschek, S., Hoffmann, A., Reyes del Paso, G.A. et al. Autonomic Cardiovascular Control and Executive Function in Chronic Hypotension. ann. behav. med. 51, 442–453 (2017). https://doi.org/10.1007/s12160-016-9868-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12160-016-9868-7

Keywords

Navigation