Skip to main content
Log in

Influence of Planetary Ball Milling Pretreatment on Lignocellulose Structure

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Ball milling mechanochemical pretreatment stands out as it can be used for biomass processing without the use of chemicals. This pretreatment is recognized to alter the organization of the biomass components and to reduce the degree of crystallinity of cellulose structure. In this context, the study of characterization techniques that identify and quantify post-pretreatment alterations still deserves attention. In this study, the alterations caused by dry grinding in a planetary ball milling in sugarcane bagasse, Tectona grandis, and Eucalyptus saligna biomass were evaluated by 13C solid-state nuclear magnetic resonance (ssNMR). The biomasses were pretreated for 60, 150, and 180 min and enzymatically hydrolyzed. Saccharification results, at optimal conditions, were correlated to the cellulose crystallinity reduction, which was assessed by examining the relative C4 and C6 crystalline and amorphous areas using 13C CPMAS NMR. The cellulose crystallinity index (CI) measured through the C4 relative area in the NMR spectra decreased with the increase of glucose yield: CI from 33 to 15 (yield from 18 to 82%) for sugarcane bagasse, from 41 to 22 (yield from 4 to 87%) for Tectona, and from 41 to 26 (yield 2 to 80%) for Eucalyptus. The lignin phase, measured by the syringyl/guaiacyl ratio, and acetyl groups linked to the hemicellulose phase seem not to be affected by the pretreatment. This study reports the first-ever ball milling and saccharification and 13C CPMAS spectrum of Tectona grandis. 13C ssNMR proved to be a reference method for probing the deconstruction process promoted by mechanochemical pretreatment in plant biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vu HP, Nguyen LN, Vu MT, Johir MAH, Mclaughlan R, Nghiem LD (2020) A comprehensive review on the framework to valorise lignocellulosic biomass as biorefinery feedstocks. Sci Total Environ 743:140–630. https://doi.org/10.1016/j.scitotenv.2020.140630

    Article  CAS  Google Scholar 

  2. Lu M, He D, Li J, Han L, Xiao W (2021) Rheological characterization of ball-milled corn stover with different fragmentation scales at high-solids loading. Ind Crop Prod 167:113–517. https://doi.org/10.1016/j.indcrop.2021.113517

    Article  CAS  Google Scholar 

  3. Inoue H, Yano S, Endo T, Sakaki T, Sawayama S (2008) Combining hot compressed water and ball milling pretreatments to improve the efficiency of the enzymatic hydrolysis of Eucalyptus. Biotechnol Biofuels 1:1–9. https://doi.org/10.1186/1754-6834-1-2

    Article  CAS  Google Scholar 

  4. Silva AS, Inoue H, Endo T, Yano S, Bon EPS (2010) Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresour Technol 101:7402–7409. https://doi.org/10.1016/j.biortech.2010.05.008

    Article  CAS  PubMed  Google Scholar 

  5. Teixeira RSS, Silva ASA, Kim H, Ishikawa K, Endo T, Lee S, Bon E (2013) Use of cellobiohydrolase-free cellulase blends for the hydrolysis of microcrystalline cellulose and sugarcane bagasse pretreated by either ball milling or ionic liquid [Emim][Ac]. Bioresour Technol 149:551–555. https://doi.org/10.1016/j.biortech.2013.09.019

    Article  CAS  PubMed  Google Scholar 

  6. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2012) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure (LAP). NREL/TP-510-42618. https://www.nrel.gov/docs/gen/fy13/42618.pdf. Accessed 30 June 2023.

  7. Hossain N (2020) Characterization of novel moss biomass, Bryum dichotomum Hedw. as Solid Fuel Feedstock. BioEnerg Res 13:50–60. https://doi.org/10.1007/s12155-019-10086-7

    Article  CAS  Google Scholar 

  8. Arévalo C, Freer J, Naulin PA, Barrera NP, Troncoso E, Araya J, Peña-Farfal C, Castillo RP (2017) Study of the ultrastructure of Eucalyptus globulus wood substrates subjected to auto-hydrolysis and diluted acid hydrolysis pre-treatments and its influence on enzymatic hydrolysis. BioEnerg Res 10:714–727. https://doi.org/10.1007/s12155-017-9833-8

    Article  CAS  Google Scholar 

  9. Rodriguez-Zúñiga UF, Farinas CS, Carneiro RLL, Silva GM, Cruz AJG, Giordano RLC, Giordano RC, Ribeiro MPA (2014) Fast determination of the composition of pretreated sugarcane bagasse using near-infrared spectroscopy. BioEnerg Res 7:1441–1453. https://doi.org/10.1007/s12155-014-9488-7

    Article  CAS  Google Scholar 

  10. Severo LS, Rodrigues JB, Campanelli DA, Pereira VM, Menezes JW, Menezes EW, Valsecchi C, Vasconcellos MAZ (2021) Synthesis and Raman characterization of wood sawdust ash, and wood sawdust ash-derived graphene. Diam Relat Mater 117:108–496. https://doi.org/10.1016/j.diamond.2021.108496

    Article  CAS  Google Scholar 

  11. Harman-Ware AE, Crocker M, Pace RB, Placido A, Morton S, DeBolt S (2015) Characterization of endocarp biomass and extracted lignin using pyrolysis and spectroscopic methods. BioEnerg Res 8:350–368. https://doi.org/10.1007/s12155-014-9526-5

    Article  CAS  Google Scholar 

  12. Ago M, Endo T, Hirotsu T (2004) Crystalline transformation of native cellulose from cellulose I to cellulose II polymorph by a ball-milling method with a specific amount of water. Cellulose 11:163–167. https://doi.org/10.1023/B:CELL.0000025423.32330.fa

    Article  CAS  Google Scholar 

  13. Pereira SC, Maehara L, Machado CMM, Farinas CS (2016) Physical-chemical-morphological characterization of the whole sugarcane lignocellulosic biomass used for 2G ethanol production by spectroscopy and microscopy techniques. Renew Energy 87:607–617. https://doi.org/10.1016/j.renene.2015.10.054

    Article  CAS  Google Scholar 

  14. Lupoi JS, Singh S, Simmons BA, Henry RJ (2014) Assessment of lignocellulosic biomass using analytical spectroscopy: an evolution to high-throughput techniques. BioEnerg Res 7:1–23. https://doi.org/10.1007/s12155-013-9352-1

    Article  CAS  Google Scholar 

  15. Cipriano DF, Chinelatto JRLS, Nascimento SA, Rezende CA, Menezes SMC, Freitas JCC (2020) Potential and limitations of 13C CP/MAS NMR spectroscopy to determine the lignin content of the lignocellulosic feedstock. Biomass Bioenergy 142:105–792. https://doi.org/10.1016/j.biombioe.2020.105792

    Article  CAS  Google Scholar 

  16. Alderson TR, Kay LE (2021) NMR spectroscopy captures the essential role of dynamics in regulating biomolecular function. Cell 184:577–595. https://doi.org/10.1016/j.cell.2020.12.034

    Article  CAS  PubMed  Google Scholar 

  17. Chen X, Chen J, You T, Wang K, Xu F (2015) Effects of polymorphs on dissolution of cellulose in NaOH/urea aqueous solution. Carbohydr Polym 125:85–91. https://doi.org/10.1016/j.carbpol.2015.02.054

    Article  CAS  PubMed  Google Scholar 

  18. Modica A, Rosselli S, Catinella G, Sottile F, Catania CA, Cavallaro G, Lazzara G, Botta L, Spinella A, Bruno M (2020) Solid state 13C-NMR methodology for the cellulose composition studies of the shells of Prunus dulcis and their derived cellulosic materials. Carbohydr Polym 240:116–290. https://doi.org/10.1016/j.carbpol.2020.116290

    Article  CAS  Google Scholar 

  19. Yue Y, Han J, Han G, Zhang Q, French AD, Wu Q (2015) Characterization of cellulose I/II hybrid fibers isolated from energycane bagasse during the delignification process: morphology, crystallinity and percentage estimation. Carbohydr Polym 133:438–447. https://doi.org/10.1016/j.carbpol.2015.07.058

    Article  CAS  PubMed  Google Scholar 

  20. Ghosh M, Prajapati BPP, Suryawanshi RK, Dey KK, Kango N (2019) Study of the effect of enzymatic deconstruction on natural cellulose by NMR measurements. Chem Phys Lett 727:105–115. https://doi.org/10.1016/j.cplett.2019.04.063

    Article  CAS  Google Scholar 

  21. Vandenberghe LPS et al (2022) Beyond sugar and ethanol: the future of sugarcane biorefineries in Brazil. Renew Sust Energ Rev 167:112–721. https://doi.org/10.1016/j.rser.2022.112721

    Article  CAS  Google Scholar 

  22. Souza HJ, Miguel EP, Nascimento RGM, Cabacinha CD, Rezende AV, Santos ML (2022) Thinning-response modifier term in growth models: an application on clonal Tectona grandis Linn F. stands at the amazonian region. Forest Ecol Manag 511:120109. https://doi.org/10.1016/j.foreco.2022.120109

    Article  Google Scholar 

  23. Da Rocha LC, Fett-Neto AG (2004) Effects of temperature on adventitious root development in microcuttings of Eucalyptus saligna Smith and Eucalyptus globulus Labill. J Therm Biol 29:315–324. https://doi.org/10.1016/j.jtherbio.2004.05.006

    Article  Google Scholar 

  24. Panaro MS, Olivieri RRB, Teixeir RRS, Freitas SP, Bon EPS (2019) Capítulo 15 - Pré-tratamento de biomassa de cana-de-açúcar por moinho de bolas em meios seco, úmido e na presença de aditivos. In: Andrade DF (ed) Processos Químicos e Biotecnológicos, vol 3, 1st edn. Editora Poisson, Belo Horizonte, pp 108–120. https://www.poisson.com.br/livros/quimica/volume3/

  25. Devadasu S, Joshi SM, Gogate PR, Sonawane SH, Suranani S (2020) Intensification of delignification of Tectona grandis saw dust as sustainable biomass using acoustic cavitational devices. Ultrason Sonochem 63:104914. https://doi.org/10.1016/j.ultsonch.2019.104914

    Article  CAS  PubMed  Google Scholar 

  26. Lourenço A, Araújo S, Gominho J, Evtuguin D (2020) Cellulose structural changes during mild torrefaction of Eucalyptus wood. Polymers 12:2831. https://doi.org/10.3390/polym12122831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gilcher EB, Kuch N, Del Mundo JT, Ausman SF, Santiago-Martinez L, Clewett CFM, Gomez EW, Gomez ED, Root TW, Fox BG, Dumesic JA (2023) Evolution of the celulose microfibril through gamma-valerolactone-assisted co-solvent and enzymatic hydrolysis. ACS Sustain Chem Eng 11:3270–3283. https://doi.org/10.1021/acssuschemeng.2c06030

    Article  CAS  Google Scholar 

  28. Newman RH (1999) Estimation of the lateral dimensions of cellulose crystallites using 13C NMR signal strengths. Solid State Nucl Mag 15:21–29. https://doi.org/10.1016/s0926-2040(99)00043-0

    Article  CAS  Google Scholar 

  29. Wang HM, Wang B, Wen JL, Wang SF, Shi Q, Sun RC (2018) Green and efficient conversion strategy of Eucalyptus based on mechanochemical pretreatment. Energ Convers Manage 175:112–120. https://doi.org/10.1016/j.enconman.2018.09.002

    Article  CAS  Google Scholar 

  30. Pawar PM, Koutaniemi S, Tenkanen M, Mellerowicz EJ (2013) Acetylation of woody lignocellulose: significance and regulation. Front Plant Sci 4:118. https://doi.org/10.3389/fpls.2013.00118

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dolan GK, Cartwright B, Bonilla MR, Gidley MJ, Stokes JR, Yakubov GE (2019) Probing adhesion between nanoscale cellulose fibers using AFM lateral force spectroscopy: the effect of hemicelluloses on hydrogen bonding. Carbohydr Polym 208:97–107. https://doi.org/10.1016/j.carbpol.2018.12.052

    Article  CAS  PubMed  Google Scholar 

  32. Cosgrove DJ (2014) Re-constructing our models of cellulose and primary cell wall assembly. Curr Opin Plant Biol 22:122–131. https://doi.org/10.1016/j.pbi.2014.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yoo CG, Dumitrache A, Muchero W, Natzke J, Akinosho H, Li M, Sykes RW, Brown SD, Davison B, Tuskan GA, Pu Y, Ragauskas AJ (2018) Significance of lignin S/G ratio in biomass recalcitrance of Populus trichocarpa variants for bioethanol production. ACS Sustain Chem Eng 6:2162–2168. https://doi.org/10.1021/acssuschemeng.7b03586

    Article  CAS  Google Scholar 

  34. Zeng J, Helms GL, Gao X, Chen S (2013) Quantification of wheat straw lignin structure by comprehensive NMR analysis. J Agric Food Chem 61:10848–10857. https://doi.org/10.1021/jf4030486

    Article  CAS  PubMed  Google Scholar 

  35. Silva GGD, Couturier M, Berrin J, Buléon A, Rouau X (2012) Effects of grinding processes on enzymatic degradation of wheat straw. Bioresour Technol 103:192–200. https://doi.org/10.1016/j.biortech.2011.09.073

    Article  CAS  PubMed  Google Scholar 

  36. Roy R, Rahman MS, Raynie DE (2020) Recent advances of greener pretreatment technologies of lignocellulose. Curr Res Green Sustain Chem 3:100035. https://doi.org/10.1016/j.crgsc.2020.100035

    Article  Google Scholar 

  37. Terrett OM, Dupree P (2019) Covalent interactions between lignin and hemicelluloses in plant secondary cell walls. Curr Opin Biotechnol 56:97–104. https://doi.org/10.1016/j.copbio.2018.10.010

    Article  CAS  PubMed  Google Scholar 

  38. Xing L, Hu C, Zhang W, Guan L, Gu J (2020) Transition of cellulose supramolecular structure during concentrated acid treatment and its implication for cellulose nanocrystal yield. Carbohydr Polym 229:115–539. https://doi.org/10.1016/j.carbpol.2019.115539

    Article  CAS  Google Scholar 

  39. Miura K, Nakano T (2015) Analysis of mercerization process based on the intensity change of deconvoluted resonances of 13C CP/MAS NMR: cellulose mercerized under cooling and non-cooling conditions. Mater Sci Eng C 53:189–195. https://doi.org/10.1016/j.msec.2015.04.006

    Article  CAS  Google Scholar 

  40. Wang Y, Lian J, Wan J, Ma Y, Zhang Y (2015) A supramolecular structure insight for conversion property of cellulose in hot compressed water: polymorphs and hydrogen bonds changes. Carbohydr Polym 133:94–103. https://doi.org/10.1016/j.carbpol.2015.06.110

    Article  CAS  PubMed  Google Scholar 

  41. Zugenmaier P (2008) Crystalline cellulose and cellulose derivates. Characterization and Structures. Springer Series in Wood Science, Springer, Austria

    Book  Google Scholar 

  42. Xiao MZ, Chen WJ, Cao XF, Chen YY, Zhao BC, Jiang ZH, Yuah TQ, Sun RC (2020) Unmasking the heterogeneity of carbohydrates in heartwood, sapwood, and bark of Eucalyptus. Carbohydr Polym 238:116212. https://doi.org/10.1016/j.carbpol.2020.116212

    Article  CAS  PubMed  Google Scholar 

  43. Kovalenko VI (2010) Crystalline cellulose: structure and hydrogen bonds. Russ Chem Rev 79:231–241. https://doi.org/10.1070/RC2010v079n03ABEH004065

    Article  CAS  Google Scholar 

  44. Lefort R, De Gusseme A, Willart J, Danède F, Descamps M (2004) Solid state NMR and DSC methods for quantifying the amorphous content in solid dosage forms: an application to ball-milling of trehalose. Int J Pharm 280:209–219. https://doi.org/10.1016/j.ijpharm.2004.05.012

    Article  CAS  PubMed  Google Scholar 

  45. Shen F, Xiong X, Fu J, Yang J, Qiu M, Qi X, Tsang DCW (2020) Recent advances in mechanochemical production of chemicals and carbon materials from sustainable biomass resources. Renew Sust Energ Rev 130:109944. https://doi.org/10.1016/j.rser.2020.109944

    Article  CAS  Google Scholar 

  46. Wang H, Wang J, Mujumdar AS, Jin X, Liu ZL, Zhang Y, Xiao HW (2021) Effects of postharvest ripening on physicochemical properties, microstructure, cell wall polysaccharides contents (pectin, hemicellulose, cellulose) and nanostructure of kiwifruit (Actinidia deliciosa). Food Hydrocoll 118:106–808. https://doi.org/10.1016/j.foodhyd.2021.106808

    Article  CAS  Google Scholar 

  47. Liu H, Chen X, Ji G, Yu H, Gao C, Han L, Xiao W (2019) Mechanochemical deconstruction of lignocellulosic cell wall polymers with ball-milling. Bioresour Technol 286:121364. https://doi.org/10.1016/j.biortech.2019.121364

    Article  CAS  PubMed  Google Scholar 

  48. Ji G, Han L, Gao C, Xiao W, Zhang Y, Cao Y (2017) Quantitative approaches for illustrating correlations among the mechanical fragmentation scales, crystallinity and enzymatic hydrolysis glucose yield of rice straw. Bioresour Technol 241:262–268. https://doi.org/10.1016/j.biortech.2017.05.062

    Article  CAS  PubMed  Google Scholar 

  49. Matsuoka M, Hirata J, Yoshizawa S (2010) Kinetics of solid-state polymorphic transition of glycine in mechano-chemical processing. Chem Eng Res Des 88:1169–1173. https://doi.org/10.1016/j.cherd.2010.01.011

    Article  CAS  Google Scholar 

  50. Konishi Y, Kadota K, Tozuka Y, Shimosaka A, Shirakawa Y (2016) Amorphization and radical formation of cystine particles by a mechanochemical process analyzed using DEM simulation. Powder Technol 301:220–227. https://doi.org/10.1016/j.powtec.2016.06.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Agência Nacional de Petróleo, Gás Natural e Biocombustíveis (ANP, Brazil), for the Scientific Initiation Scholarship through the program PRH 20.1 of the Institute of Chemistry at UFRJ.

Funding

This work was supported by the Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ—grant number E-26/010.002491/2019, Brazil) and the Financiadora de Estudos e Projetos (FINEP, grant number 01.09.0566.001421/08, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Sposina Sobral Teixeira.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1713 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fortunato, M.R.C., San Gil, R.A.d., Borre, L.B. et al. Influence of Planetary Ball Milling Pretreatment on Lignocellulose Structure. Bioenerg. Res. 16, 2068–2080 (2023). https://doi.org/10.1007/s12155-023-10669-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-023-10669-5

Keywords

Navigation