Skip to main content

Advertisement

Log in

Low Electromagnetic Fields Applied to Chlorella fusca Cultivation to Increase Production of Microalga-Based Carbohydrates

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Magnetic fields (MF) may be generated, either by magnets or by electric current, and may interact with biological systems, causing changes in their properties. Thus, MF in microalga cultures may improve cell growth, alter biomass composition, and produce high-added-value biomolecules of interest. Therefore, this study is aimed at investigating the influence of low electromagnetic field (EMF) application (5 mT) on Chlorella fusca LEB 111 growth, biochemical composition of biomass, and carbohydrate productivity when cultivated in vertical tubular photobioreactors. EMF were applied for 1 h/day for 15 days. They stimulated C. fusca growth by 8.9 % and rendered 1.71 g/L biomass by comparison with the control culture (CC—without any EMF application). EMF application increased carbohydrate content (31.1 %) and carbohydrate productivity (3.54 mg/L·d), which were 24.7 and 35.8 % higher than the CC, respectively. Since studies of low EMF in microalga cultures are scarce, this study elucidated EMF application to C. fusca cultivation as a non-toxic and low-cost alternative whose focus is enhancement of carbohydrate production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Rizwan M, Mujtaba G, Memon SA et al (2018) Exploring the potential of microalgae for new biotechnology applications and beyond: a review. Renew Sustain Energy Rev 92:394–404. https://doi.org/10.1016/j.rser.2018.04.034

    Article  Google Scholar 

  2. Moraes L, Santos LO, Costa JAV (2020) Bioprocess strategies for enhancing biomolecules productivity in Chlorella fusca LEB 111 using CO2 a carbon source. Biotechnol Prog 36:.https://doi.org/10.1002/btpr.2909

  3. Yap JK, Sankaran R, Chew KW et al (2021) Advancement of green technologies: a comprehensive review on the potential application of microalgae biomass. Chemosphere 281:130886. https://doi.org/10.1016/j.chemosphere.2021.130886

    Article  CAS  PubMed  Google Scholar 

  4. Deamici KM, Morais MG, Santos LO et al (2022) Magnetic field action on Limnospira indica PCC8005 cultures: enhancement of biomass yield and protein content. Appl Sci 12:1533. https://doi.org/10.3390/app12031533

    Article  CAS  Google Scholar 

  5. Chong JF, Fadhullah W, Lim V, Lee CK (2019) Two-stage cultivation of the marine microalga Chlorella salina for starch and carbohydrate production. Aquac Int 27:1269–1288. https://doi.org/10.1007/s10499-019-00385-3

    Article  CAS  Google Scholar 

  6. Costa SS, Peres BP, Machado BR et al (2020) Increased lipid synthesis in the culture of Chlorella homosphaera with magnetic fields application. Bioresour Technol 315:.https://doi.org/10.1016/j.biortech.2020.123880

  7. Santiago-Morales IS, Trujillo-Valle L, Márquez-Rocha FJ, Hernández JFL (2018) Tocopherols, phycocyanin and superoxide dismutase from microalgae: as potential food antioxidants. Appl Food Biotechnol 5:19–27. https://doi.org/10.22037/afb.v5i1.17884

    Article  CAS  Google Scholar 

  8. Bauer LM, Costa JAV, Rosa APC, Santos LO (2017) Growth stimulation and synthesis of lipids, pigments and antioxidants with magnetic fields in Chlorella kessleri cultivations. Bioresour Technol 244:1425–1432. https://doi.org/10.1016/j.biortech.2017.06.036

    Article  CAS  PubMed  Google Scholar 

  9. Kim S, Ishizawa H, Inoue D et al (2022) Microalgal transformation of food processing byproducts into functional food ingredients. Bioresour Technol 344:126324. https://doi.org/10.1016/j.biortech.2021.126324

    Article  CAS  PubMed  Google Scholar 

  10. Abu-Ghosh S, Dubinsky Z, Verdelho V, Iluz D (2021) Unconventional high-value products from microalgae: a review. Bioresour Technol 329:124895. https://doi.org/10.1016/j.biortech.2021.124895

    Article  CAS  PubMed  Google Scholar 

  11. Show PL (2022) Global market and economic analysis of microalgae technology: status and perspectives. Bioresour Technol 357:127329. https://doi.org/10.1016/j.biortech.2022.127329

    Article  CAS  Google Scholar 

  12. Amorim ML, Soares J, Vieira BB et al (2020) Extraction of proteins from the microalga Scenedesmus obliquus BR003 followed by lipid extraction of the wet deproteinized biomass using hexane and ethyl acetate. Bioresour Technol 307:123190. https://doi.org/10.1016/j.biortech.2020.123190

    Article  CAS  PubMed  Google Scholar 

  13. Menestrino BC, Pintos THC, Sala L et al (2020) Application of static magnetic fields on the mixotrophic culture of Chlorella minutissima for carbohydrate production. Appl Biochem Biotechnol 192:822–830. https://doi.org/10.1007/s12010-020-03364-0

    Article  CAS  PubMed  Google Scholar 

  14. Qu W, Loke Show P, Hasunuma T, Ho SH (2020) Optimizing real swine wastewater treatment efficiency and carbohydrate productivity of newly microalga Chlamydomonas sp. QWY37 used for cell-displayed bioethanol production. Bioresour Technol 305:123072. https://doi.org/10.1016/j.biortech.2020.123072

    Article  CAS  PubMed  Google Scholar 

  15. Braga VS, Moreira JB, Costa JAV, Morais MG (2019) Enhancement of the carbohydrate content in Spirulina by applying CO2, thermoelectric fly ashes and reduced nitrogen supply. Int J Biol Macromol 123:1241–1247. https://doi.org/10.1016/j.ijbiomac.2018.12.037

    Article  CAS  PubMed  Google Scholar 

  16. Silvello MAC, Gonçalves IS, Azambuja SPH et al (2022) Microalgae-based carbohydrates: a green innovative source of bioenergy. Bioresour Technol 344:126304. https://doi.org/10.1016/j.biortech.2021.126304

    Article  CAS  Google Scholar 

  17. Duarte JH, Fanka LS, Costa JAV (2016) Utilization of simulated flue gas containing CO2, SO2, NO and ash for Chlorella fusca cultivation. Bioresour Technol 214:159–165. https://doi.org/10.1016/j.biortech.2016.04.078

    Article  CAS  PubMed  Google Scholar 

  18. Cassuriaga APA, Freitas BCB, Morais MG, Costa JAV (2018) Innovative polyhydroxybutyrate production by Chlorella fusca grown with pentoses. Bioresour Technol 265:456–463. https://doi.org/10.1016/j.biortech.2018.06.026

    Article  CAS  PubMed  Google Scholar 

  19. Levasseur W, Perré P, Pozzobon V (2020) A review of high value-added molecules production by microalgae in light of the classification. Biotechnol Adv 41:107545. https://doi.org/10.1016/j.biotechadv.2020.107545

    Article  CAS  PubMed  Google Scholar 

  20. Subhash GV, Rajvanshi M, Raja KKG et al (2022) Challenges in microalgal biofuel production: a perspective on techno economic feasibility under biorefinery stratagem. Bioresour Technol 343:126155. https://doi.org/10.1016/j.biortech.2021.126155

    Article  CAS  Google Scholar 

  21. Deamici KM, Dziergowska K, Silva PGP et al (2022) Microalgae cultivated under magnetic field action: insights of an environmentally sustainable approach. Sustain 14:.https://doi.org/10.3390/su142013291

  22. Park WK, Min K, Yun JH et al (2022) Paradigm shift in algal biomass refinery and its challenges. Bioresour Technol 346:126358. https://doi.org/10.1016/j.biortech.2021.126358

    Article  CAS  PubMed  Google Scholar 

  23. Santos LO, Deamici KM, Menestrino BC et al (2017) Magnetic treatment of microalgae for enhanced product formation. World J Microbiol Biotechnol 33:169. https://doi.org/10.1007/s11274-017-2332-4

    Article  CAS  PubMed  Google Scholar 

  24. Feng X, Chen Y, Lv J et al (2020) Enhanced lipid production by Chlorella pyrenoidosa through magnetic field pretreatment of wastewater and treatment of microalgae-wastewater culture solution: magnetic field treatment modes and conditions. Bioresour Technol 306:123102. https://doi.org/10.1016/j.biortech.2020.123102

    Article  CAS  PubMed  Google Scholar 

  25. Tu R, Jin W, Xi T et al (2015) Effect of static magnetic field on the oxygen production of Scenedesmus obliquus cultivated in municipal wastewater. Water Res 86:132–138. https://doi.org/10.1016/j.watres.2015.07.039

    Article  CAS  PubMed  Google Scholar 

  26. Albuquerque WWC, Costa RMPB, Salazar FT, Porto ALF (2016) Evidences of the static magnetic field influence on cellular systems. Prog Biophys Mol Biol 121:16–28. https://doi.org/10.1016/j.pbiomolbio.2016.03.003

    Article  CAS  PubMed  Google Scholar 

  27. Santos LO, Silva PGP, Machado BR et al (2022) Update on the application of magnetic fields to microalgal cultures. World J Microbiol Biotechnol 38:1–10. https://doi.org/10.1007/s11274-022-03398-y

    Article  CAS  Google Scholar 

  28. Deamici KM, Costa JAV, Santos LO (2016) Magnetic fields as triggers of microalga growth: evaluation of its effect on Spirulina sp. Bioresour Technol 220:62–67. https://doi.org/10.1016/j.biortech.2016.08.038

    Article  CAS  PubMed  Google Scholar 

  29. Costa JAV, Colla LM, Filho PD et al (2002) Modelling of Spirulina platensis growth in fresh water using response surface methodology. World J Microbiol Biotechnol 18:603–607. https://doi.org/10.1023/A:1016822717583

    Article  Google Scholar 

  30. Deamici KM, Santos LO, Costa JAV (2021) Magnetic field as promoter of growth in outdoor and indoor assays of Chlorella fusca. Bioprocess Biosyst Eng 44:1453–1460. https://doi.org/10.1007/s00449-021-02526-6

    Article  CAS  PubMed  Google Scholar 

  31. DuBois M, Gilles KA, Hamilton JK et al (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  32. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275. https://doi.org/10.1016/s0021-9258(19)52451-6

    Article  CAS  PubMed  Google Scholar 

  33. Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509. https://doi.org/10.1016/s0021-9258(18)64849-5

    Article  CAS  PubMed  Google Scholar 

  34. Silva PGP, Prescendo Júnior D, Sala L et al (2020) Magnetic field as a trigger of carotenoid production by Phaffia rhodozyma. Process Biochem 98:131–138. https://doi.org/10.1016/j.procbio.2020.08.001

    Article  CAS  Google Scholar 

  35. Small DP, Hüner NPA, Wan W (2012) Effect of static magnetic fields on the growth, photosynthesis and ultrastructure of Chlorella kessleri microalgae. Bioelectromagnetics 33:298–308. https://doi.org/10.1002/bem.20706

    Article  CAS  PubMed  Google Scholar 

  36. Wang HY, Zeng XB, Guo SY, Li ZT (2008) Effects of magnetic field on the antioxidant defense system of recirculation-cultured Chlorella vulgaris. Bioelectromagnetics 29:39–46. https://doi.org/10.1002/bem.20360

    Article  CAS  PubMed  Google Scholar 

  37. Deamici KM, Cardias BB, Costa JAV, Santos LO (2016) Static magnetic fields in culture of Chlorella fusca: bioeffects on growth and biomass composition. Process Biochem 51:912–916. https://doi.org/10.1016/j.procbio.2016.04.005

    Article  CAS  Google Scholar 

  38. Shao W, Ebaid R, Abomohra AEF, Shahen M (2018) Enhancement of Spirulina biomass production and cadmium biosorption using combined static magnetic field. Bioresour Technol 265:163–169. https://doi.org/10.1016/j.biortech.2018.06.009

    Article  CAS  PubMed  Google Scholar 

  39. Singh H, Varanasi JL, Banerjee S, Das D (2019) Production of carbohydrate enrich microalgal biomass as a bioenergy feedstock. Energy 188:116039. https://doi.org/10.1016/j.energy.2019.116039

    Article  CAS  Google Scholar 

  40. Olia MSJ, Azin M, Sepahy AA, Moazami N (2019) Feasibility of improving carbohydrate content of Chlorella S4, a native isolate from the Persian Gulf using sequential statistical designs. Biofuels 0:1–9. https://doi.org/10.1080/17597269.2019.1679572

  41. Nezammahalleh H, Ghanati F, Adams TA et al (2016) Effect of moderate static electric field on the growth and metabolism of Chlorella vulgaris. Bioresour Technol 218:700–711. https://doi.org/10.1016/j.biortech.2016.07.018

    Article  CAS  PubMed  Google Scholar 

  42. Ruiz-Gómez M, Prieto-Barcia M, Ristori-Bogajo E, Martı́nez-Morillo M (2004) Static and 50 Hz magnetic fields of 0.35 and 2.45 mT have no effect on the growth of Saccharomyces cerevisiae. Bioelectrochemistry 64:151–155. https://doi.org/10.1016/j.bioelechem.2004.04.003

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was partially funded by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brasil, Finance Code 001. The authors are also thankful for the financial support provided by the National Counsel for Technological and Scientific Development (CNPq), Brazil.

Author information

Authors and Affiliations

Authors

Contributions

KMD: conceptualization, methodology, investigation, writing, review, and editing original draft; PGPS: conceptualization, writing, review, and editing original draft; JAVC: conceptualization, visualization, and reviewing original draft; LOS: project administration, supervision, writing, review, and editing original draft. All authors read and approved the manuscript.

Corresponding author

Correspondence to Lucielen Oliveira Santos.

Ethics declarations

Ethics Approval

Neither human beings nor animals were used for carrying out the study reported by this manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deamici, K.M., Silva, P.G.P., Costa, J.A.V. et al. Low Electromagnetic Fields Applied to Chlorella fusca Cultivation to Increase Production of Microalga-Based Carbohydrates. Bioenerg. Res. 16, 1548–1555 (2023). https://doi.org/10.1007/s12155-022-10562-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10562-7

Keywords

Navigation