Skip to main content
Log in

High Performance Polyhexahydrotriazine (PHT) Thermoset for the Synthesis of Furanics

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Highly active, environmental friendly thermosets, polyhexahydrotriazines (PHTs) were prepared through the condensation of aromatic diamines and paraformaldehyde. The sulfonic acid-derived PHT possesses that both Brønsted base and acidic sites have been realized as a potential material in the dehydration of biomass (glucose/fructose) to 5-hydroxymethylfurfural (HMF) at low temperature. This thermoset is degradable at high temperatures (> 80 °C) in the presence of aqueous solution of glucose/fructose with the generation of oxidized products of HMF and consequently produced furan-amine adducts. Moreover, the highly active PHT can be separated at lower temperatures (< 80 °C) with recyclability and found that its activity is declining after each cycle. This thermoset material can be used as an alternative to plastic material which is not degradable even thermally. In addition, PHTs were characterized successfully by various techniques such as PXRD, FT-IR, SEM, BET, and TGA analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 3
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All the data including characterization, HPLC and relevant is available with corresponding author.

Abbreviations

DFF:

2,5-diformyl furan

DMF:

dimethylformamide

DMSO:

dimethyl sulfoxide

FFCA:

5-formyl-2-carboxylic acid

FDCA:

2,5-furan dicarboxylic acid

HMF:

5-hydroxymethylfurfural

HMFCA:

5-hydroxymethyl-2-furancarboxylic acid

PHT:

polyhexahydrotriazine

HT:

hydrotriazine

FTIR:

Fourier transformation infrared spectroscopy

HPLC:

high-performance liquid chromatography

PXRD:

powdered X-ray crystallography

SEM:

scanning electron microscopy

TGA:

thermo gravimetric analysis

BJH:

Barrett-Joyner-Halenda

BET:

Brunauer Emmett and Teller

References

  1. Dijkstra DJ, Langstein G (2012) Alternative feedstocks: a continuing trend in the polymer industry. Polym. Int 61:6–8. https://doi.org/10.1002/pi.3209

    Article  CAS  Google Scholar 

  2. Perlack, R. D (2005) Biomass as a feed stock for a Bioenergy and Bioproducts Industry: the technical feasibility of a billion-ton annual supply. 2005.

  3. Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12:1493–1513. https://doi.org/10.1039/C004654J

    Article  CAS  Google Scholar 

  4. Teong SP, Yi G, Zhang Y (2014) Hydroxymethylfurfural production from bioresources: past, present and future. Green Chem 16:2015–2026. https://doi.org/10.1039/C3GC42018C

    Article  CAS  Google Scholar 

  5. Galkin KI, Ananikov VP (2019) When will 5-hydroxymethylfurfural, the sleeping giant of sustainable chemistry, awaken? ChemSusChem. 12:2976–2982. https://doi.org/10.1002/cssc.201900592

    Article  CAS  PubMed  Google Scholar 

  6. Deshan ADK, Atanda L, Moghaddam L, Rackemann DW, Beltramini J, Doherty WOS (2020) Heterogeneous catalytic conversion of sugars into 2,5-furandicarboxylic acid. Front. Chem 8:659. https://doi.org/10.3389/fchem.2020.00659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sousa AF, Vilela C, Fonseca AC, Matos M, Freire CSR, Gruter G-JM, Coelho JFJ, Silvestre AJD (2015) Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency. Polym. Chem 6:5961–5983. https://doi.org/10.1039/C5PY00686D

    Article  CAS  Google Scholar 

  8. Ventura M, Aresta M, Dibenedetto A (2018) Heterogeneous catalysts for the selective aerobic oxidation of 5-hydroxymethylfurfural to added value products in water. Inorganica Chim. Acta 470:11–21. https://doi.org/10.1016/j.ica.2017.06.074

    Article  CAS  Google Scholar 

  9. Ventura M, Aresta M, Dibenedetto A (2016) Selective aerobic oxidation of 5-(Hydroxymethyl) furfural to 5-formyl-2-furancarboxylic acid in water. ChemSusChem. 9:1096–1100. https://doi.org/10.1002/cssc.201600060

    Article  CAS  PubMed  Google Scholar 

  10. Xu C, Panoe E, Rodríguez-Padrón D, Luque R, Mauriello F (2020) Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chem Soc Rev 49:4273–4306. https://doi.org/10.1039/D0CS00041H

    Article  CAS  PubMed  Google Scholar 

  11. Ma J, Du Z, Xu J, Chu Q, Yi Pang (2010) Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran and synthesis of a fluorescent material. ChemSusChem. 4:51–54. https://doi.org/10.1002/cssc.201000273

    Article  CAS  PubMed  Google Scholar 

  12. Kong QS, Li X-L, Xu H-J, Fu Y (2020) Conversion of 5-hydroxymethylfurfural to chemicals: a review of catalytic routes and product applications. Fuel Process Techno 209:106528. https://doi.org/10.1016/j.fuproc.2020.106528

    Article  CAS  Google Scholar 

  13. Wang H, Zhu C, Li D, Liu Q, Tan J, Wang C, Cai C, Ma L (2019) Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2,5-dimethylfuran. Renew Sustain Energy Rev. 103:227–247. https://doi.org/10.1021/acsomega.0c05857

    Article  CAS  Google Scholar 

  14. Lee J, Hwang S, Lee SK, Ahn S, Jang SG, You N-H, Kim CB, Goh M (2019) Optimizing filler network formation in poly(hexahydrotriazine) for realizing high thermal conductivity and low oxygen permeation. Polymer. 179:121639. https://doi.org/10.1016/j.polymer.2019.121639

    Article  CAS  Google Scholar 

  15. Kaminker R, Callaway EB, Dolinski ND, Barbon SM, Shibata M, Wang H, Hu J, Hawker CJ (2018) Solvent-free synthesis of high-performance polyhexahydrotriazine (PHT) thermosets. Chem. Mater. 30:8352–8358. https://doi.org/10.1021/acs.chemmater.8b03926

    Article  CAS  Google Scholar 

  16. Garcia JM, Jones GO, Kumar V, McCloskey BD, Boday DJ et al (2014) Recyclable, strong thermosets and organogels via paraformaldehyde condensation with diamines. Science. 344:732–735. https://doi.org/10.1126/science.1251484

    Article  CAS  PubMed  Google Scholar 

  17. Yuan Y, Sun Y, Yan S, Zhao J, Liu S, Zhang M, Zheng X, Jia L (2017) Multiply fully recyclable carbon fibre reinforced heat-resistant covalent thermosetting advanced composites. Nat. Commun. 8:14657. https://doi.org/10.1038/ncomms14657

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang B, Ma S, Yan S, Zhu J (2019) Readily recyclable carbon fiber reinforced composites based on degradable thermosets: a review. Green. Chem. 21:5781–5796. https://doi.org/10.1039/C9GC01760G

    Article  CAS  Google Scholar 

  19. Shaikh M, Sahu M, Atyam KK, Ranganath KVS (2016) Surface modification of ferrite nanoparticles with dicarboxylic acids for the synthesis of 5-hydroxymethylfurfural: a novel and green protocol. RSC Adv. 6:76795–76801. https://doi.org/10.1039/C6RA13354A

    Article  CAS  Google Scholar 

  20. Shaikh M, Sahu M, Khilari S, Atyam KK, Maji P, Ranganath KVS (2016) Surface modification of polyhedral nanocrystalline MgO with imidazolium carboxylates for dehydration reactions: a new approach. RSC Adv. 6:82591–82595. https://doi.org/10.1039/C6RA16358K

    Article  CAS  Google Scholar 

  21. Jaiswal R, Ranganath KVS (2021) Carbon nanoparticles on magnetite: a new heterogeneous catalyst for the oxidation of 5-hydroxymethylfurfural (5-HMF) to 2,5-diformoylfuran (DFF). J. Inorg. Organomet. Polym. 31:4504–4511. https://doi.org/10.1007/s10904-021-02062-6

    Article  CAS  Google Scholar 

  22. Shaikh M, Sahu M, Singh SK, Khilari S (2018) Graphene oxide as a sustainable metal and solvent free catalyst for dehydration of fructose to 5-HMF: a new and green protocol Catal. Commun. 106:64–67. https://doi.org/10.1016/j.catcom.2017.12.018

    Article  CAS  Google Scholar 

  23. Verma S, Nadagouda MN, Varma RS (2017) Porous nitrogen enriched carbonaceous material from marine waste: chitosan-derived carbon nitride catalyst for aerial oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Sci Rep 7:13596. https://doi.org/10.1038/s41598-017-14016-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Benabid FZ, Kharchi N, Zouai F, Mourad A-HI, Benachour D (2019) Impact of co-mixing technique and surface modification of ZnO nanoparticles using stearic acid on their dispersion into HDPE to produce HDPE/ZnO nanocomposites. Polym Polym Compos 27:389–399. https://doi.org/10.1177/0967391119847353

    Article  CAS  Google Scholar 

  25. Babaei Z, Chermahini AN, Dinari M, Saraji M, Shahvar A (2019) Sulfonated triazine-based covalent organic polymer supported on mesorporous material: a new and robust material for the production of 5-hydroxymethylfurfural. Sustain Energy Fuels 3:1024–1032. https://doi.org/10.1039/C9SE00015A

    Article  CAS  Google Scholar 

  26. Wang L, Zhang L, Li H, Ma Y, Zhang R (2019) High selective production of 5-HMF from fructose by sulfonic acid functionalized SBA-15 catalyst. Composites Part B: Eng 156:88–94. https://doi.org/10.1016/j.compositesb.2018.08.044

    Article  CAS  Google Scholar 

  27. Hosseni M-S, Farhani MM (2019) Surface functionalization of magnetite nanoparticles with sulfonic acid and heteropoly acid: efficient magnetically recoverable solid acid catalysts. Chem. Asian J. 14:1076–1083. https://doi.org/10.1002/asia.201801810

    Article  CAS  Google Scholar 

  28. Varma S, Baig RBN, Nadagouda MN, Len C, Varma RS (2017) Sustainable pathway to furanics from biomass via heterogeneous organo-catalysis. Green. Chem 19:164–168. https://doi.org/10.1039/C6GC02551J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen G, Sun Q, Xu J, Zheng L, Rong J, Zong B (2021) Sulfonic derivatives as recyclable acid catalysts in the dehydration of fructose to 5-HMF in biphasic solvent systems. ACS Omega. 6:6798–6809. https://doi.org/10.1021/acsomega.0c05857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chhabra T, Bahuguna A, Dhankhar SS, Nagaraja CM, Krishnan V (2019) Sulfonated graphitic nitride as a highly selective and efficient heterogeneous catalyst for the conversion of biomass-derived sacharides to 5-hydroxymethylfurfural in green solvents. Green Chem. 21:6012–6026

    Article  CAS  Google Scholar 

  31. Wen L-R, Man NN, Yuan W-K, Li M (2016) Direct construction of 2-Aylimino chromenes from arynes, N, S ketene acetals and DMF. J. Org. Chem. 81:5942–5948. https://doi.org/10.1021/acs.joc.6b00843

    Article  CAS  PubMed  Google Scholar 

  32. Liu W, Chen C, Zhou P (2017) N, N-Dimethylformamide (DMF) as a source of oxygen to access α-hydroxy arones via the α-hydroxylation of arones. J. Org. Chem. 82:2219. https://doi.org/10.1021/acs.joc.6b02751

    Article  CAS  PubMed  Google Scholar 

  33. Sotomayor FJ, Cychosz KA, Thommes T (2018) Characterization of micro/mesoporous materials by physisorption: concepts and case studies. Acc. Mater. Surf. Res 2018:34–50

    Google Scholar 

  34. Xu Z, Liang Y, Ma X, Chen S, Yu C, Wang Y, Zhang D, Miao M (2020) Recyclable thermoset hyperbranched polymers containing reversible hexahydro-s-triazine. Nat. Sustain 3:29–34. https://doi.org/10.1038/s41893-019-0444-6

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Council of Scientific and Industrial Research and IOE-BHU for the financial support.

Funding

This work was supported by CSIR under the scheme CSIR-01(2968)/19/EMR-II and IOE-BHU (6032) incentive grant for the research faculty.

Author information

Authors and Affiliations

Authors

Contributions

AR conducted the literature search and preparation and characterization of PHTs. MP conducted the synthesis of PHTs and critically revised the work. RJ conducted the biomass degradation reactions and HPLC analysis. KVSR monitored the research work.

Corresponding author

Correspondence to Kalluri V. S. Ranganath.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1298 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, A., Jaiswal, R., Pandey, M. et al. High Performance Polyhexahydrotriazine (PHT) Thermoset for the Synthesis of Furanics. Bioenerg. Res. 16, 507–516 (2023). https://doi.org/10.1007/s12155-022-10453-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10453-x

Keywords

Navigation