Skip to main content

Advertisement

Log in

Cradle to Grave Life Cycle Assessment of Mexican Forest Pellets for Residential Heating

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

This study applies environmental life cycle assessment to quantify and compare the environmental profile of the production and use of wood pellets for residential heating (baseline) and compares the pellet system with two different alternative systems for residential heating in Mexico: (1) the use of LPG heater and (2) one electricity heater powered by three different sources of electricity. The baseline system boundaries include the stages of forest management, transportation, industrial, distribution, wood pellet energy conversion, and ash management. First-hand data and measurements of the emission profiles in the field and laboratory were developed. The functional unit was 1 MJ of thermal energy for residential heating. Environmental impacts were calculated for six impact categories from the ReCiPe midpoint method. Furthermore, a sensitivity analysis was performed to evaluate the influence of the allocation criteria (mass and economic) as well as adopting different values for the electricity sources (system’s hotspots). The results obtained for each impact category show a relatively wide range of variation when the five scenarios of the heating systems are compared and analyzed. Electricity heater powered with photovoltaic electricity is better for all the impact categories analyzed. The performance of pellets and LPG is very close, but the pellets have lower impacts on global warming (three times), fossil resource scarcity (four times), and acidification. Therefore, the use of pellets in an efficient boiler is a promising option for residential heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available.

Code Availability

Not applicable

References

  1. Rogelj J, Shindell D, Jiang K et al (2018) Mitigation pathways compatible with 1.5°C in the context of sustainable development. In: Masson-Delmotte V et al (eds) Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, In press, pp 93–174

  2. IEA: International Energy Agency (2018) Renewables 2018, Analysis and forecast for 2023. https://www.iea.org/reports/renewables-2018. Accessed 15 August 2021

  3. REN21 (2020) Renewables 2020, Global Status Report. https://www.ren21.net/gsr-2020/. Accessed 15 August 2021

  4. Tauro R, García CA, Skutsch M, Masera O (2018) The potential for sustainable biomass pellets in Mexico: an analysis of energy potential, logistic costs and market demand. Renew Sustain Energy Rev 82:380–389. https://doi.org/10.1016/j.rser.2017.09.036

    Article  Google Scholar 

  5. Mexican Energy Ministry (2019) National Energy Balance 2018. https://www.gob.mx/cms/uploads/attachment/file/528054/Balance_Nacional_de_Energ_a_2018.pdf. Accessed 15 August 2021

  6. Ordoñez-Frías EJ, Azamar-Barrios JA, Mata-Zayas E et al (2020) Bioenergy potential and technical feasibility assessment of residues from oil palm processing: a case study of Jalapa, Tabasco, Mexico. Biomass Bioenergy 142. https://doi.org/10.1016/j.biombioe.2020.105668

  7. Mexican Institute of Statistics (2018) National Survey on Energy Consumption in Private Homes. https://www.inegi.org.mx/programas/encevi/2018/. Accessed 15 August 2021

  8. Sterman JD, Siegel L, Rooney-Varga JN (2018) Does replacing coal with wood lower CO2 emissions? Dynamic lifecycle analysis of wood bioenergy. Environ Res Lett 13:015007. https://doi.org/10.1088/1748-9326/AAA512

    Article  Google Scholar 

  9. Norton M, Baldi A, Buda V et al (2019) Serious mismatches continue between science and policy in forest bioenergy. GCB Bioenergy 11:1256–1263. https://doi.org/10.1111/GCBB.12643

    Article  Google Scholar 

  10. ISO (2006) Environmental management - life cycle assessment - requirements and guidelines - ISO 14044

  11. Ruiz D, San Miguel G, Corona B, López FR (2018) LCA of a multifunctional bioenergy chain based on pellet production. Fuel 215:601–611. https://doi.org/10.1016/j.fuel.2017.11.050

    Article  CAS  Google Scholar 

  12. Monteleone B, Chiesa M, Marzuoli R et al (2015) Life cycle analysis of small scale pellet boilers characterized by high efficiency and low emissions. Appl Energy 155:160–170. https://doi.org/10.1016/j.apenergy.2015.05.089

    Article  CAS  Google Scholar 

  13. Fantozzi F, Buratti C (2010) Life cycle assessment of biomass chains: wood pellet from short rotation coppice using data measured on a real plant. Biomass Bioenergy 34:1796–1804. https://doi.org/10.1016/j.biombioe.2010.07.011

    Article  CAS  Google Scholar 

  14. Chiesa M, Monteleone B, Venuta ML et al (2016) Integrated study through LCA, ELCC analysis and air quality modelling related to the adoption of high efficiency small scale pellet boilers. Biomass Bioenergy 90:262–272. https://doi.org/10.1016/j.biombioe.2016.04.019

    Article  CAS  Google Scholar 

  15. Karner K, Dißauer C, Enigl M et al (2017) Environmental trade-offs between residential oil-fired and wood pellet heating systems: Forecast scenarios for Austria until 2030. Renew Sustain Energy Rev 80:868–879. https://doi.org/10.1016/j.rser.2017.05.242

    Article  CAS  Google Scholar 

  16. Ferreira J, Esteves B, Cruz-Lopes L et al (2018) Environmental advantages through producing energy from grape stalk pellets instead of wood pellets and other sources. Int J Environ Stud 7233:1–15. https://doi.org/10.1080/00207233.2018.1446646

    Article  Google Scholar 

  17. Hossain MU, Leu SY, Poon CS (2016) Sustainability analysis of pelletized bio-fuel derived from recycled wood product wastes in Hong Kong. J Clean Prod 113:400–410. https://doi.org/10.1016/j.jclepro.2015.11.069

    Article  CAS  Google Scholar 

  18. ISO (2018) Clean cookstoves and clean cooking solutions – harmonized laboratory test protocols - ISO 19867

  19. Johnson M, Edwards R, Ghilardi A et al (2009) Quantification of carbon savings from improved biomass cookstove projects. Environ Sci Technol 43:2456–2462. https://doi.org/10.1021/es801564u

    Article  CAS  PubMed  Google Scholar 

  20. Roden CA, Bond TC, Conway S, Osorto Pinel AB (2006) Emission factors and real-time optical properties of particles emitted from traditional wood burning cookstoves. Environ Sci Technol 40:6750–6757. https://doi.org/10.1021/es052080i

    Article  CAS  PubMed  Google Scholar 

  21. EN 14785 (2006) Residential space heating appliances fired by wood pellets. Requirements and test methods

  22. Ruiz-García VM, Edwards RD, Ghasemian M et al (2018) Fugitive emissions and health implications of plancha-type stoves. Environ Sci Technol 52:10848–10855. https://doi.org/10.1021/acs.est.8b01704

    Article  CAS  PubMed  Google Scholar 

  23. Jetter J, Zhao Y, Smith KR et al (2012) Pollutant emissions and energy efficiency under controlled conditions for household biomass cookstoves and implications for metrics useful in setting international test standards. Environ Sci Technol 46:10827–10834. https://doi.org/10.1021/es301693f

    Article  CAS  PubMed  Google Scholar 

  24. Johnson M, Edwards R, Alatorre Frenk C, Masera O (2008) In-field greenhouse gas emissions from cookstoves in rural Mexican households. Atmos Environ 42:1206–1222. https://doi.org/10.1016/j.atmosenv.2007.10.034

    Article  CAS  Google Scholar 

  25. Zhang J, Smith KR, Ma Y et al (2000) Greenhouse gases and other airborne pollutants from household stoves in China: a database for emission factors. Atmos Environ 34:4537–4549. https://doi.org/10.1016/S1352-2310(99)00450-1

    Article  CAS  Google Scholar 

  26. Smith KR, Khalil MAK, Rasmussen RA et al (1993) Greenhouse gases from biomass and fossil fuel stoves in developing countries: a Manila pilot study. Chemosphere 26:479–505. https://doi.org/10.1016/0045-6535(93)90440-G

    Article  CAS  Google Scholar 

  27. Royo J, Canalís P, Quintana D (2020) Chemical study of fly ash deposition in combustion of pelletized residual agricultural biomass. Fuel 268:117228. https://doi.org/10.1016/j.fuel.2020.117228

    Article  CAS  Google Scholar 

  28. Curran MA (2012) Life cycle assessment handbook: a guide for environmentally sustainable products. Wiley, Hoboken, NJ. https://doi.org/10.1002/9781118528372

    Article  Google Scholar 

  29. ISO (2006) Environmental management - life cycle assessment - principles and framework - ISO 14040

  30. Dias AC, Arroja L (2012) Environmental impacts of eucalypt and maritime pine wood production in Portugal. J Clean Prod 37:368–376. https://doi.org/10.1016/j.jclepro.2012.07.056

    Article  Google Scholar 

  31. Itten R, Stucki M, Jungbluth N (2011) Life cycle assessment of burning different solid biomass substrates. http://esu-services.ch/fileadmin/download/publicLCI/itten-2011-solid-biomass-combustion.pdf. Accessed 10 August 2021

  32. Wernet G, Bauer C, Steubing B et al (2016) The ecoinvent database version 3 (part I): overview and methodology. Int J Life Cycle Assess 21:1218–1230. https://doi.org/10.1007/s11367-016-1087-8

    Article  Google Scholar 

  33. SimaPro (2020) SimaPro software. PRé Consultants, Amersfoort, Netherlands

  34. Wiloso E, Heijungs R (2013) Key issues in conducting life cycle assessment of bio-based renewable energy sources. In: Singh A, Pant D, Olsen SI (eds) Life Cycle Assessment of Renewable Energy Sources. Springer London, London, pp 13–36

    Chapter  Google Scholar 

  35. Morrison B, Golden JS (2017) Life cycle assessment of co-firing coal and wood pellets in the Southeastern United States. J Clean Prod 150:188–196. https://doi.org/10.1016/j.jclepro.2017.03.026

    Article  Google Scholar 

  36. Lin YP, Wang WH, Pan SY et al (2016) Environmental impacts and benefits of organic Rankine cycle power generation technology and wood pellet fuel exemplified by electric arc furnace steel industry. Appl Energy 183:369–379. https://doi.org/10.1016/j.apenergy.2016.08.183

    Article  CAS  Google Scholar 

  37. Wang L, Setoguchi A, Oishi K et al (2019) Life cycle assessment of 36 dairy farms with by-product feeding in Southwestern China. Sci Total Environ 696:133985. https://doi.org/10.1016/j.scitotenv.2019.133985

    Article  CAS  Google Scholar 

  38. Abdou K, Ben Rais Lasram F, Romdhane MS et al (2018) Rearing performances and environmental assessment of sea cage farming in Tunisia using life cycle assessment (LCA) combined with PCA and HCPC. Int J Life Cycle Assess 23:1049–1062. https://doi.org/10.1007/s11367-017-1339-2

    Article  CAS  Google Scholar 

  39. Abdou K, Gascuel D, Aubin J et al (2018) Environmental life cycle assessment of seafood production: a case study of trawler catches in Tunisia. Sci Total Environ 610–611:298–307. https://doi.org/10.1016/j.scitotenv.2017.08.067

    Article  CAS  PubMed  Google Scholar 

  40. Addinsoft (2021) XLSTAT statistical and data analysis solution

  41. Carter EM, Shan M, Yang X et al (2014) Pollutant emissions and energy efficiency of chinese gasifier cooking stoves and implications for future intervention studies. Environ Sci Technol 48:6461–6467. https://doi.org/10.1021/ES405723W

    Article  CAS  PubMed  Google Scholar 

  42. Venturini E, Vassura I, Zanetti C et al (2015) Evaluation of non-steady state condition contribution to the total emissions of residential wood pellet stove. Energy 88:650–657. https://doi.org/10.1016/J.ENERGY.2015.05.105

    Article  CAS  Google Scholar 

  43. Medina P, Berrueta V, Martínez M et al (2015) Comparative performance of five Mexican plancha-type cookstoves using water boiling tests. Dev Eng 2:20–28. https://doi.org/10.1016/j.deveng.2016.06.001

    Article  Google Scholar 

  44. Vicente ED, Vicente AM, Evtyugina M et al (2020) Emissions from residential combustion of certified and uncertified pellets. Renew Energy 161:1059–1071. https://doi.org/10.1016/J.RENENE.2020.07.118

    Article  CAS  Google Scholar 

  45. Medina P, Berrueta V, Cinco L et al (2019) Understanding household energy transitions: from evaluating single cookstoves to “clean stacking” alternatives. Atmosphere (Basel) 10:5–9. https://doi.org/10.3390/atmos10110693

    Article  CAS  Google Scholar 

  46. WHO (2010) Guidelines for indoor air quality: selected pollutants. World Health Organization (WHO). https://www.ncbi.nlm.nih.gov/books/NBK138705/pdf/Bookshelf_NBK138705.pdf. Accessed 05 August 2021

  47. Henkel J, Kunde R, Gaderer M, Erdmann G (2009) Assessment of Global emissions, local emissions and immissions of different heating systems. Sustain 2009, Vol 1, Pages 494–515 1:494–515. https://doi.org/10.3390/SU1030494

  48. Caserini S, Livio S, Giugliano M et al (2010) LCA of domestic and centralized biomass combustion: the case of Lombardy (Italy). Biomass Bioenergy 34:474–482. https://doi.org/10.1016/J.BIOMBIOE.2009.12.011

    Article  CAS  Google Scholar 

  49. Laschi A, Marchi E, González-García S (2016) Environmental performance of wood pellets’ production through life cycle analysis. Energy 103:469–480. https://doi.org/10.1016/j.energy.2016.02.165

    Article  Google Scholar 

  50. Martín-Gamboa M, Marques P, Freire F et al (2020) Life cycle assessment of biomass pellets: a review of methodological choices and results. Renew Sustain Energy Rev 133. https://doi.org/10.1016/j.rser.2020.110278

  51. Quinteiro P, Greco F, da Cruz Tarelho LA et al (2020) A comparative life cycle assessment of centralised and decentralised wood pellets production for residential heating. Sci Total Environ 730:139162. https://doi.org/10.1016/J.SCITOTENV.2020.139162

    Article  CAS  PubMed  Google Scholar 

  52. Quinteiro P, Tarelho L, Marques P et al (2019) Life cycle assessment of wood pellets and wood split logs for residential heating. Sci Total Environ 689:580–589. https://doi.org/10.1016/J.SCITOTENV.2019.06.420

    Article  CAS  PubMed  Google Scholar 

  53. Martín-Gamboa M, Dias LC, Quinteiro P et al (2019) Multi-criteria and life cycle assessment of wood-based bioenergy alternatives for residential heating: a sustainability analysis. Energies 12. https://doi.org/10.3390/en12224391

Download references

Acknowledgements

The authors would like to thank the Mexican Council for Science and Technology (CONACYT) and the Mexican Secretariat of Energy (Fondo de Sustentabilidad Energética) for supporting this research by “Clúster de biocombustibles sólidos para generación térmica y eléctrica” Project Number (246911).

Funding

This work is a product of research projects funded by the Mexican Council for Science and Technology (CONACYT) and the Mexican Secretariat of Energy (Fondo de Sustentabilidad Energética) Award Number 246911 “Clúster de biocombustibles sólidos para generación térmica y eléctrica.”

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: C. G.-B., V. R.-G., and R. M; formal analysis: J. V.-T., R. M., and V. R.-G.; funding acquisition: O. M.-C., V. R.-G., and C. G.-B.; methodology: J. N., J. B.-R., J. V.-T., V. R.-G., R. M., and C. G.-B.; writing—original draft: J. B.-R., R. M., and J. N.; writing—review and editing: V. R.-G., R. M., and J. N.

Corresponding author

Correspondence to Víctor M. Ruiz-García.

Ethics declarations

Ethics Approval

The authors declare that the research complied with all ethical standards.

Consent to Participate

This manuscript does not contain any studies with human participants or animals performed by any of the authors.

Consent for Publication

This manuscript does not contain any other authors. The authors consent for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musule, R., Núñez, J., Bonales-Revuelta, J. et al. Cradle to Grave Life Cycle Assessment of Mexican Forest Pellets for Residential Heating. Bioenerg. Res. 15, 1733–1746 (2022). https://doi.org/10.1007/s12155-021-10337-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10337-6

Keywords

Navigation