Skip to main content
Log in

Physicochemical and Structural Characteristics of Corn Stover and Cobs After Physiological Maturity

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Corn stover removal for biofuels production removes potentially recyclable nutrients and carbon challenging the sustainability of the process. Therefore, this study focused on quantifying the distributions of dry matter, nitrogen, phosphorus, potassium, carbon, sugars and lignin in corn stover fractions, and cobs. In 2016 and 2017, corn plants from different hybrids were collected from a corn field in Ohio at two maturity levels. The properties were evaluated for different non-grain corn plant fractions (i.e., stover fractions above and below ear, and cob). Stover fractions below and above ear (not including cobs) and cobs contributed, respectively, to 42–56%, 31–38%, and 13–18% of the total non-grain aboveground dry matter in 2 years. Glucose and lignin concentrations were uniformly distributed and ranged from 321 to 407 mg/g and 87 to 158 mg/g, respectively, for both years. Cobs contained the highest concentration of other sugars (351–361 mg/g) in both years, compared to 217–298 mg/g in other fractions. Nitrogen and phosphorus were uniformly distributed across the different corn stover and cob fractions, ranging between 4–20 mg/g and 0.2–1.5 mg/g, respectively. Potassium concentration was the highest in stover fraction below ear (10–24 mg/g) compared to 5–11 mg/g in other fractions. The results suggest that harvesting cob and above ear stover fractions from the field would allow corn stover collection with suitable sugar concentrations for biofuels/products while retaining stover fractions with higher nutrients concentrations in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. U.S. EPA (2017) Overview for renewable fuel standard. https://www.epa.gov/renewable-fuel-standard-program/overview-renewable-fuel-standard. Accessed 29 May 2018

  2. Schwab A, Warner E, Lewis J (2016) 2015 Survey of non-starch ethanol and renewable hydrocarbon biofuels producers. https://www.nrel.gov/docs/fy16osti/65519.pdf. Accessed 3 May 2019

  3. U.S. DOE (2016) 2016 Billion-Ton Report. https://www.energy.gov/sites/prod/files/2016/12/f34/2016_billion_ton_report_12.2.16_0.pdf. Accessed 16 Dec 2018

  4. Iowa Corn Promotion Board (2013) Sustainable Corn Stover Harvest. https://www.iowacorn.org/media/cms/IowaCornResearchBrochure_Final_IFT_F4B608A12ED16.pdf. Accessed 10 Mar 2019

  5. Arora K, Licht M, Leibold K (2014) Industrial corn stover harvest. In: Iowa State Univ. Ext. Outreach. https://store.extension.iastate.edu/product/Industrial-Corn-Stover-Harvest. Accessed 10 Mar 2019

  6. Shah A, Darr M, Khanal S, Lal R (2016) A techno-environmental overview of a corn stover biomass feedstock supply chain for cellulosic biorefineries. Biofuels:1–11

  7. Lal R (2009) Soil quality impacts of residue removal for bioethanol production. Soil Tillage Res 102:233–241. https://doi.org/10.1016/j.still.2008.07.003

    Article  Google Scholar 

  8. Wilhelm WW (2004) Crop and soil productivity response to corn residue removal: a literature review. Agron J 96(1):17. https://doi.org/10.2134/agronj2004.0001

    Article  Google Scholar 

  9. Adler PR, Rau BM, Roth GW (2015) Sustainability of corn stover harvest strategies in Pennsylvania. Bioenergy Res 8:1310–1320. https://doi.org/10.1007/s12155-015-9593-2

    Article  CAS  Google Scholar 

  10. Hoskinson RL, Karlen DL, Birrell SJ et al (2007) Engineering, nutrient removal, and feedstock conversion evaluations of four corn stover harvest scenarios. Biomass Bioenergy 31:126–136. https://doi.org/10.1016/j.biombioe.2006.07.006

    Article  CAS  Google Scholar 

  11. Mourtzinis S, Cantrell KB, Arriaga FJ, Balkcom KS, Novak JM, Frederick JR, Karlen DL (2016) Carbohydrate and nutrient composition of corn stover from three southeastern USA locations. Biomass Bioenergy 85:153–158. https://doi.org/10.1016/j.biombioe.2015.11.031

    Article  CAS  Google Scholar 

  12. Johnson JMF, Wilhelm WW, Karlen DL, Archer DW, Wienhold B, Lightle DT, Laird D, Baker J, Ochsner TE, Novak JM, Halvorson AD, Arriaga F, Barbour N (2010) Nutrient removal as a function of corn stover cutting height and cob harvest. Bioenergy Res 3:342–352. https://doi.org/10.1007/s12155-010-9093-3

    Article  Google Scholar 

  13. Karlen DL, Kovar JL, Birrell SJ (2015) Corn r nutrient removal estimates for Central Iowa, USA. Sustain 7:8621–8634. https://doi.org/10.3390/su7078621

    Article  CAS  Google Scholar 

  14. Cruse RM, Herndl CG (2009) Balancing corn stover harvest for biofuels with soil and water conservation. J Soil Water Conserv 64:286–291. https://doi.org/10.2489/jswc.64.4.286

    Article  Google Scholar 

  15. Jeschke M, Heggenstaller A (2012) Sustainable corn stover harvest for biofuel production. Crop Insights 22:1–6

    Google Scholar 

  16. Chen H, Li X, Hu F, Shi W (2013) Soil nitrous oxide emissions following crop residue addition: a meta-analysis. Glob Chang Biol 19:2956–2964. https://doi.org/10.1111/gcb.12274

    Article  PubMed  Google Scholar 

  17. Jin VL, Baker JM, Johnson JMF, Karlen DL, Lehman RM, Osborne SL, Sauer TJ, Stott DE, Varvel GE, Venterea RT, Schmer MR, Wienhold BJ (2014) Soil greenhouse gas emissions in response to corn stover removal and tillage management across the US Corn Belt. Bioenergy Res 7:517–527. https://doi.org/10.1007/s12155-014-9421-0

    Article  CAS  Google Scholar 

  18. Congreves KA, Brown SE, Németh DD, Dunfield KE, Wagner-Riddle C (2017) Differences in field-scale N2O flux linked to crop residue removal under two tillage systems in cold climates. GCB Bioenergy 9:666–680. https://doi.org/10.1111/gcbb.12354

    Article  CAS  Google Scholar 

  19. Graham RL, Nelson R, Sheehan J, Perlack RD, Wright LL (2007) Current and potential U.S. corn stover supplies. Agron J 99(1):11. https://doi.org/10.2134/agronj2005.0222

    Article  Google Scholar 

  20. Nafziger ED (2011) Tillage and nitrogen responses to residue removal in continuous corn. In: North central extension-industry soil fertility conference. International Plant Nutrition Institute, Des Moines, pp 16–19

    Google Scholar 

  21. Blanco-Canqui H, Lal R (2007) Soil and crop response to harvesting corn residues for biofuel production. Geoderma 141:355–362. https://doi.org/10.1016/j.geoderma.2007.06.012

    Article  CAS  Google Scholar 

  22. Wilhelm WW, Johnson JMF, Karlen DL, Lightle DT (2007) Corn stover to sustain soil organic carbon further constrains biomass supply. Agron J 99:1665–1667. https://doi.org/10.2134/agronj2007.0150

    Article  CAS  Google Scholar 

  23. Mann L, Tolbert V, Cushman J (2002) Potential environmental effects of corn (Zea mays L.) stover removal with emphasis on soil organic matter and erosion. Agric Ecosyst Environ 89:149–166. https://doi.org/10.1016/S0167-8809(01)00166-9

    Article  Google Scholar 

  24. Blanco-Canqui H, Lal R (2009) Corn stover removal for expanded uses reduces soil fertility and structural stability. Soil Sci Soc Am J 73:418. https://doi.org/10.2136/sssaj2008.0141

    Article  CAS  Google Scholar 

  25. Wang S, Wang Y, Cai Q, Wang X, Jin H, Luo Z (2014) Multi-step separation of monophenols and pyrolytic lignins from the water-insoluble phase of bio-oil. Sep Purif Technol 122:248–255. https://doi.org/10.1016/j.seppur.2013.11.017

    Article  CAS  Google Scholar 

  26. Johnson J, Novak J, Varvel G et al (2014) Crop residue mass needed to maintain soil organic carbon levels: can it be determined? Bioenergy Res 7:481–490. https://doi.org/10.1007/s12155-013-9402-8

    Article  CAS  Google Scholar 

  27. Wilhelm WW, Johnson JMF, Lightle DT, Karlen DL, Novak JM, Barbour NW, Laird DA, Baker J, Ochsner TE, Halvorson AD, Archer DW, Arriaga F (2011) Vertical distribution of corn stover dry mass grown at several US locations. Bioenergy Res 4:11–21. https://doi.org/10.1007/s12155-010-9097-z

    Article  Google Scholar 

  28. Karlen DL, Birrell SJ, Johnson JMF, Osborne SL, Schumacher TE, Varvel GE, Ferguson RB, Novak JM, Fredrick JR, Baker JM, Lamb JA, Adler PR, Roth GW, Nafziger ED (2014) Multilocation corn stover harvest effects on crop yields and nutrient removal. BioEnergy Res 7:528–539. https://doi.org/10.1007/s12155-014-9419-7.Rights

    Article  CAS  Google Scholar 

  29. Ye X, Liu S, Kline L, et al (2006) Fast biomass compositional analysis using Fourier Transform Near-infrared Technique 2006 ASABE Annu Int Meet 0300:1–10

  30. Barten TJ (2013) Evaluation and prediction of corn stover biomass and composition from commercially available corn hybrids. Iowa State Unviersity, Ames

    Book  Google Scholar 

  31. Templeton DW, Sluiter AD, Hayward TK, Hames BR, Thomas SR (2009) Assessing corn stover composition and sources of variability via NIRS. Cellulose 16:621–639. https://doi.org/10.1007/s10570-009-9325-x

    Article  CAS  Google Scholar 

  32. Weiss ND, Farmer JD, Schell DJ (2010) Impact of corn stover composition on hemicellulose conversion during dilute acid pretreatment and enzymatic cellulose digestibility of the pretreated solids. Bioresour Technol 101:674–678. https://doi.org/10.1016/j.biortech.2009.08.082

    Article  CAS  PubMed  Google Scholar 

  33. Gao P, Fan D, Luo Y et al (2009) Efficient and comprehensive utilization of hemicellulose in the corn stover. Chin J Chem Eng 17:350–354. https://doi.org/10.1016/S1004-9541(08)60215-3

    Article  CAS  Google Scholar 

  34. Duguid KB, Montross MD, Radtke CW, Crofcheck CL, Wendt LM, Shearer SA (2009) Effect of anatomical fractionation on the enzymatic hydrolysis of acid and alkaline pretreated corn stover. Bioresour Technol 100:5189–5195. https://doi.org/10.1016/j.biortech.2009.03.082

    Article  CAS  PubMed  Google Scholar 

  35. Mourtzinis S, Cantrell KB, Arriaga FJ, Balkcom KS, Novak JM, Frederick JR, Karlen DL (2014) Distribution of structural carbohydrates in corn plants across the southeastern USA. Bioenergy Res 7:551–558. https://doi.org/10.1007/s12155-014-9429-5

    Article  CAS  Google Scholar 

  36. Aboagye D, Banadda N, Kambugu R, Seay J, Kiggundu N, Zziwa A, Kabenge I (2017) Glucose recovery from different corn stover fractions using dilute acid and alkaline pretreatment techniques. J Ecol Environ 41:1–11. https://doi.org/10.1186/s41610-017-0044-1

    Article  Google Scholar 

  37. Garlock RJ, Chundawat SPS, Balan V, Dale BE (2009) Optimizing harvest of corn Stover fractions based on overall sugar yields following ammonia fiber expansion pretreatment and enzymatic hydrolysis. Biotechnol Biofuels 2:1–14. https://doi.org/10.1186/1754-6834-2-29

    Article  CAS  Google Scholar 

  38. Ding JC, Xu GC, Han RZ, Ni Y (2016) Biobutanol production from corn stover hydrolysate pretreated with recycled ionic liquid by Clostridium saccharobutylicum DSM 13864. Bioresour Technol 199:228–234. https://doi.org/10.1016/j.biortech.2015.07.119

    Article  CAS  PubMed  Google Scholar 

  39. Wang L, Chen H (2011) Increased fermentability of enzymatically hydrolyzed steam-exploded corn stover for butanol production by removal of fermentation inhibitors. Process Biochem 46:604–607. https://doi.org/10.1016/j.procbio.2010.09.027

    Article  CAS  Google Scholar 

  40. Zhang Y, Hou T, Li B, Liu C, Mu X, Wang H (2013) Acetone-butanol-ethanol production from corn stover pretreated by alkaline twin-screw extrusion pretreatment. Bioprocess Biosyst Eng 37:913–921. https://doi.org/10.1007/s00449-013-1063-7

    Article  CAS  PubMed  Google Scholar 

  41. He T, Jiang Z, Wu P, Yi J, Li J, Hu C (2016) Fractionation for further conversion: from raw corn stover to lactic acid. Sci Rep 6:1–11. https://doi.org/10.1038/srep38623

    Article  CAS  Google Scholar 

  42. Nichols NN, Saha BC (2016) Production of xylitol by a Coniochaeta ligniaria strain tolerant of inhibitors and defective in growth on xylose. Biotechnol Prog 32:606–612. https://doi.org/10.1002/btpr.2259

    Article  CAS  PubMed  Google Scholar 

  43. Chen H (2014) Chemical composition and structure of natural lignocellulose. In: Biotechnology of lignocellulose: theory and practice. Chemical Industry Press, Beijing, pp 25–71

    Chapter  Google Scholar 

  44. Johnson J, Karlen D, Gresham G, Cantrell K, Archer D, Wienhold B, Varvel G, Laird D, Baker J, Ochsner T, Novak J, Halvorson A, Arriaga F, Lightle D, Hoover A, Emerson R, Barbour N (2014) Vertical distribution of structural components in corn stover. Agriculture 4:274–287. https://doi.org/10.3390/agriculture4040274

    Article  Google Scholar 

  45. SAS Institute (2011) SAS. https://www.sas.com/en_us/software/university-edition/download-software.html. Accessed 2 Dec 2018

  46. Clewer AG, Scarisbrick DH (2001) Practical statistics and experimental design for plant and crop science. Wiley, Chichester

    Google Scholar 

  47. Pennington D (2013) Harvest index: a predictor of corn stover yield. In: Michigan State Univ. Ext. https://www.canr.msu.edu/news/harvest_index_a_predictor_of_corn_stover_yield. Accessed 2 Dec 2018

  48. Sluiter A, Hames B, Ruiz R, et al (2012) NREL/TP-510-42618 analytical procedure - determination of structural carbohydrates and lignin in biomass. Lab Anal Proced 17. NREL/TP-510-42618

  49. Gonick H, Tunnicliff DD, Peters ED, Lykken L, Zahn V (1945) Determination of nitrogen by combustion improved dumas apparatus and recycle procedure. Ind Eng Chem Anal Ed 17:677–682. https://doi.org/10.1021/i560147a001

    Article  CAS  Google Scholar 

  50. US EPA (2007) Microwave assisted acid digestion of sediments, sludges, soils and oils. https://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf. Accessed 16 Dec 2018

  51. Wu Y, Liu S, Young CJ, Dahal D, Sohl TL, Davis B (2015) Projection of corn production and stover-harvesting impacts on soil organic carbon dynamics in the US. Temperate Prairies. Sci Rep 5:1–12. https://doi.org/10.1038/srep10830

    Article  CAS  Google Scholar 

  52. Faulkner DB, Berger LL, Eckhoff SR (2012) Harvest date influence on dry matter yield and moisture of corn and stover. Trans ASABE 55:593–598

    Article  Google Scholar 

  53. Balan V (2014) Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN Biotechnol 2014:1–31. https://doi.org/10.1155/2014/463074

    Article  CAS  Google Scholar 

  54. Cambouris AN, Ziadi N, Perron I, Alotaibi KD, St. Luce M, Tremblay N (2016) Corn yield components response to nitrogen fertilizer as a function of soil texture. Can J Soil Sci 96:386–399. https://doi.org/10.1139/cjss-2015-0134

    Article  CAS  Google Scholar 

  55. Ren B, Dong S, Zhao B, Liu P, Zhang J (2017) Responses of nitrogen metabolism, uptake and translocation of maize to waterlogging at different growth stages. Front Plant Sci 8:1–9. https://doi.org/10.3389/fpls.2017.01216

    Article  Google Scholar 

  56. Li HY, Xu L, Liu WJ, Fang MQ, Wang N (2014) Assessment of the nutritive value of whole corn stover and its morphological fractions. Asian Australas J Anim Sci 27:194–200. https://doi.org/10.5713/ajas.2013.13446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hanway JJ (1966) How a corn plant develops. https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1045&context=specialreports. Accessed 2 Dec 2018

  58. Sawyer J (2007) Nutrient removal when harvesting corn stover. In: Iowa State Univ. Ext. Outreach. https://crops.extension.iastate.edu/nutrient-removal-when-harvesting-corn-stover-0. Accessed 16 Dec 2018

  59. Barbosa JZ, Ferreira CF, dos Santos NZ et al (2016) Production, carbon and nitrogen in stover fractions of corn (Zea mays L.) in response to cultivar development. Ciência e Agrotecnol 40:665–675. https://doi.org/10.1590/1413-70542016406020316

    Article  Google Scholar 

  60. Latshaw WL, Miller EC (1924) Elemental composition of the corn plant. J Agric Res 27:845–861

    CAS  Google Scholar 

Download references

Funding

This work was supported by funding from USDA NIFA AFRI Foundational Program (Grant No. 2017-67021-26141) and USDA NIFA Hatch Project (Grant No. 1005665).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Shah.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanal, A., Manandhar, A. & Shah, A. Physicochemical and Structural Characteristics of Corn Stover and Cobs After Physiological Maturity. Bioenerg. Res. 12, 536–545 (2019). https://doi.org/10.1007/s12155-019-09992-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-019-09992-7

Keywords

Navigation