Skip to main content
Log in

Acid-Free Ethanol-Water Pretreatment with Low Ethanol Concentration for Robust Enzymatic Saccharification of Cellulose in Bamboo

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Lignin deposition phenomenon during the liquid-hot-water (LHW) pretreatment negatively affects substrate enzymatic digestibility (SED). To overcome this limitation of LHW, acid-free ethanol-water (EW) pretreatment with low ethanol concentration was developed. With less cellulose loss and similar hemicellulose removal, adding 10% (v/v) ethanol into water (EW10 pretreatment) resulted in a lignin removal of 5.8% higher than that of LHW pretreatment conducted at the same conditions (such as 200 °C for 40 min). Although the lignin removal did not increase significantly, differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS) characterizations indicated that LHW pretreatment-induced lignin condensation was alleviated by EW10 pretreatment, leading less lignin condensates deposited on the corresponding surface of solid substrate. Moreover, compared with lignin separated from LHW-pretreated substrate, the non-productive adsorption between EW10 pretreatment-induced lignin and cellulase was significantly weakened. As a result, the SED of EW10 pretreatment was improved to 91.7%, which was higher than LHW pretreatment by 19.5%. Due to the advantages of suppressing the deposition of lignin condensates and employing ethanol at low concentration, EW10 pretreatment shows practical significance for producing fermentable sugar from abundant non-woody biomass (bamboo) in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Littlewood J, Lei W, Turnbull C, Murphy RJ (2013) Techno-economic potential of bioethanol from bamboo in China. Biotechnol Biofuels 6:173. https://doi.org/10.1186/1754-6834-6-173

    Article  PubMed  PubMed Central  Google Scholar 

  2. He MX, Wang JL, Qin H, Shui ZX, Zhu QL, Wu B, Tan FR, Pan K, Hua QC, Dai LC, Wang WG, Tang XY, Hu GQ (2014) Bamboo: a new source of carbohydrate for biorefinery. Carbohydr Polym 111(20):645–654. https://doi.org/10.1016/j.carbpol.2014.05.025

    Article  PubMed  CAS  Google Scholar 

  3. Li ZQ, Jiang ZH, Fei BH, Pan XJ, Cai ZY, Liu X, Yu Y (2012) Ethanol organosolv pretreatment of bamboo for efficient enzymatic saccharification. BioResources 7(3):3452–3462. https://doi.org/10.15376/biores.7.3.3452-3462

    Article  CAS  Google Scholar 

  4. Li MF, Chen CZ, Sun RC (2014) Effect of pretreatment severity on the enzymatic hydrolysis of bamboo in hydrothermal deconstruction. Cellulose 21(6):4105–4117. https://doi.org/10.1007/s10570-014-0451-8

    Article  CAS  Google Scholar 

  5. Qing Q, Zhou L, Huang M, Guo Q, He Y, Wang L, Zhang Y (2016) Improving enzymatic saccharification of bamboo shoot shell by alkalic salt pretreatment with H2O2. Bioresour Technol 201:230–236. https://doi.org/10.1016/j.biortech.2015.11.059

    Article  PubMed  CAS  Google Scholar 

  6. Tsuda M, Aoyama M, Cho NS (1998) Catalyzed steaming as pre-treatment for the enzymatic hydrolysis of bamboo grass culms. Bioresour Technol 64(3):225–228. https://doi.org/10.1016/S0960-8524(97)00189-2

    Article  Google Scholar 

  7. Yamashita Y, Shono M, Sasaki C, Nakamura Y (2010) Alkaline peroxide pretreatment for efficient enzymatic saccharification of bamboo. Carbohydr Polym 79(4):914–920. https://doi.org/10.1016/j.carbpol.2009.10.017

    Article  CAS  Google Scholar 

  8. Yuan Z, Wen Y, Kapu NS (2017) Ethanol production from bamboo using mild alkaline pre-extraction followed by alkaline hydrogen peroxide pretreatment. Bioresour Technol 247:242–249. https://doi.org/10.1016/j.biortech.2017.09.080

    Article  PubMed  CAS  Google Scholar 

  9. Zhang X, Xu C, Wang H (2007) Pretreatment of bamboo residues with coriolus versicolor for enzymatic hydrolysis. J Biosci Bioeng 104(2):149–151. https://doi.org/10.1263/jbb.104.149

    Article  PubMed  CAS  Google Scholar 

  10. Li ZQ, Jiang ZH, Fei BH, Cai ZY, Pan XJ (2014) Comparison of bamboo green, timber and yellow in sulfite, sulfuric acid and sodium hydroxide pretreatments for enzymatic saccharification. Bioresour Technol 151:91–99. https://doi.org/10.1016/j.biortech.2013.10.060

    Article  PubMed  CAS  Google Scholar 

  11. Li SX, Li MF, Yu P, Fan YM, Shou JN, Sun RC (2017) Valorization of bamboo by γ-valerolactone/acid/water to produce digestible cellulose, degraded sugars and lignin. Bioresour Technol 230:90–96. https://doi.org/10.1016/j.biortech.2017.01.041

    Article  PubMed  CAS  Google Scholar 

  12. Mou H, Wu S (2017) Comparison of hydrothermal, hydrotropic and organosolv pretreatment for improving the enzymatic digestibility of bamboo. Cellulose 24(1):1–10. https://doi.org/10.1007/s10570-016-1117-5

    Article  CAS  Google Scholar 

  13. Sathitsuksanoh N, Zhu ZG, Tsungjen H, Bai MD, Zhang YH (2010) Bamboo saccharification through cellulose solvent-based biomass pretreatment followed by enzymatic hydrolysis at ultra-low cellulase loadings. Bioresour Technol 101(13):4926–4929. https://doi.org/10.1016/j.biortech.2009.09.081

    Article  PubMed  CAS  Google Scholar 

  14. Jiang ZH, Fei BH, Li ZQ (2016) Pretreatment of bamboo by ultra-high pressure explosion with a high-pressure homogenizer for enzymatic hydrolysis and ethanol fermentation. Bioresour Technol 214:876–880. https://doi.org/10.1016/j.biortech.2016.05.025

    Article  PubMed  CAS  Google Scholar 

  15. Sun SL, Wen JL, Ma MG, Sun RC (2014) Enhanced enzymatic digestibility of bamboo by a combined system of multiple steam explosion and alkaline treatments. Appl Energy 136:519–526. https://doi.org/10.1016/j.apenergy.2014.09.068

    Article  CAS  Google Scholar 

  16. Kassaye S, Pant KK, Jain S (2017) Hydrolysis of cellulosic bamboo biomass into reducing sugars via a combined alkaline solution and ionic liquid pretreament steps. Renew Energy 104:177–184. https://doi.org/10.1016/j.renene.2016.12.033

    Article  CAS  Google Scholar 

  17. Amidon T, Liu S (2009) Water-based woody biorefinery. Biotechnol Adv 27:542–550. https://doi.org/10.1016/j.biotechadv.2009.04.012

    Article  PubMed  CAS  Google Scholar 

  18. Michelin M, Teixeira JA (2016) Liquid hot water pretreatment of multi feedstocks and enzymatic hydrolysis of solids obtained thereof. Bioresour Technol 216:862–869. https://doi.org/10.1016/j.biortech.2016.06.018

    Article  PubMed  CAS  Google Scholar 

  19. Liu J, Li RQ, Shuai L, You JH, Zhao YB, Chen L, Li M, Chen LH, Huang LL, Luo XL (2017) Comparison of liquid hot water (LHW) and high boiling alcohol/water (HBAW) pretreatments for improving enzymatic saccharification of cellulose in bamboo. Ind Crop Prod 107:139–148. https://doi.org/10.1016/j.indcrop.2017.05.035

    Article  CAS  Google Scholar 

  20. Luo XL, Liu J, Wang HS, Huang LL, Chen LH (2014) Comparison of hot-water extraction and steam treatment for production of high purity-grade dissolving pulp from green bamboo. Cellulose 21(3):1445–1457. https://doi.org/10.1007/s10570-014-0234-2

    Article  CAS  Google Scholar 

  21. Ma XJ, Cao SL, Lin L, Luo XL, Chen LH, Huang LL (2013) Surface characterizations of bamboo substrates treated by hot water extraction. Bioresour Technol 136:757–760. https://doi.org/10.1016/j.biortech.2013.03.120

    Article  PubMed  CAS  Google Scholar 

  22. Ko JK, Ximenes E, Kim Y, Ladisch MR (2015) Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods. Biotechnol Bioeng 112(3):447–456. https://doi.org/10.1002/bit.25359

    Article  PubMed  CAS  Google Scholar 

  23. Yang B, Wyman CE (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86(1):88–98. https://doi.org/10.1002/bit.20043

    Article  PubMed  CAS  Google Scholar 

  24. Nagle NJ, Elander RT, Newman MM, Rohrback BT, Ruiz RO, Torget RW (2002) Efficacy of a hot washing process for pretreated yellow poplar to enhance bioethanol production. Biotechnol Prog 18(4):734–738. https://doi.org/10.1021/bp0155078

    Article  PubMed  CAS  Google Scholar 

  25. Yu Q, Zhuang X, Yuan Z, Qi W, Wang W, Wang Q, Tan X (2013) Pretreatment of sugarcane bagasse with liquid hot water and aqueous ammonia. Bioresour Technol 144:210–215. https://doi.org/10.1016/j.biortech.2013.06.078

    Article  PubMed  CAS  Google Scholar 

  26. Pan XJ, Gilkes N, Kadla J, Pye K, Saka S, Gregg D, Ehara K, Xie D, Lam D, Saddler J (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yield. Biotechnol Bioeng 94(5):851–861. https://doi.org/10.1002/bit.20905

    Article  PubMed  CAS  Google Scholar 

  27. Zhao XB, Li SM, Wu RC, Liu DH (2017) Organosolv fractionating pretreatment of lignocellulosic biomass for efficient enzymatic saccharification: chemistry, kinetics, and substrate structures. Biofuels Bioprod Biorefin 11(3):567–590. https://doi.org/10.1002/bbb.1768

    Article  CAS  Google Scholar 

  28. Teramura H, Sasaki K, Oshima T, Matsuda F, Okamoto M, Shirai T, Kawaguchi H, Ogino C, Hirano K, Sazuka T, Kitano H, Kikuchi J, Kondo A (2016) Organosolv pretreatment of sorghum bagasse using a low concentration of hydrophobic solvents such as 1-butanol or 1-pentanol. Biotechnol Biofuels 9(27):27. https://doi.org/10.1186/s13068-016-0427-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Liu J, Li M, Luo XL, Chen LH, Huang LL (2015) Effect of hot-water extraction (HWE) severity on bleached pulp based biorefinery performance of eucalyptus during the HWE–Kraft–ECF bleaching process. Bioresour Technol 181:183–190. https://doi.org/10.1016/j.biortech.2015.01.055

    Article  PubMed  CAS  Google Scholar 

  30. Lin CK (1979) Prehydrolysis-alkaline pulping of sweetgum wood. Ph.D Thesis, North Carolina State University, Raleigh, NC, USA

  31. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure (LAP), Technical Report, National Renewable Energy Laboratory (NREL/TP-510-42618). https://www.nrel.gov/bioenergy/biomass-compositional-analysis.html. Accessed 31 May 2018

  32. Argyropoulos DS, Sun YJ, Paluš E (2002) Isolation of residual kraft lignin in high yield and purity. J Pulp Paper Sci 28(2):50–54

    CAS  Google Scholar 

  33. Laine J, Stenius P, Carlsson G, Ström G (1994) Surface characterization of unbleached kraft pulps by means of ESCA. Cellulose 1(2):145–160. https://doi.org/10.1007/BF00819664

    Article  CAS  Google Scholar 

  34. Schuerch C (1952) The solvent properties of liquids and their relation to the solubility, swlling, isolation and fractionation of lignin. J Am Chem Soc 74(20):5061–5067. https://doi.org/10.1021/ja01140a020

    Article  CAS  Google Scholar 

  35. Ni Y, Hu Q (1995) Alcell® lignin solubility in ethanol–water mixtures. J Appl Polym Sci 57(12):1441–1446. https://doi.org/10.1002/app.1995.070571203

    Article  CAS  Google Scholar 

  36. Wen JL, Xue BL, Xu F, Sun RC, Pinkert A (2013a) Unmasking the structural features and property of lignin from bamboo. Ind Crop Prod 42(1):332–343. https://doi.org/10.1016/j.indcrop.2012.05.041

    Article  CAS  Google Scholar 

  37. Wang QQ, He Z, Zhu Z, Zhang YH, Ni Y, Luo XL, Zhu JY (2012) Evaluations of cellulose accessibilities of lignocelluloses by solute exclusion and protein adsorption techniques. Biotechnol Bioeng 109(2):381–389. https://doi.org/10.1002/bit.23330

    Article  PubMed  CAS  Google Scholar 

  38. Pan XJ, Sano Y (2000) Comparison of acetic acid lignin with milled wood and alkaline lignins from wheat straw. Holzforschung 54(1):61−65. https://doi.org/10.1515/HF.2000.009

    Article  CAS  Google Scholar 

  39. Ko JK, Kim Y, Ximenes E, Ladisch MR (2015) Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose. Biotechnol Bioeng 112(2):252–262. https://doi.org/10.1515/HF.2000.009

    Article  PubMed  CAS  Google Scholar 

  40. Sun S, Huang Y, Sun R, Tu M (2016) The strong association of condensed phenolic moieties in isolated lignins with their inhibition of enzymatic hydrolysis. Green Chem 18(15):4276–4286. https://doi.org/10.1039/c6gc00685j

    Article  CAS  Google Scholar 

  41. Hatakeyama H (1992) Thermal Analysis. In: Lin SY, Dence CW (eds) Methods in Lignin Chemistry, Springer Series in Wood Science. Springer, Berlin, pp 200–214. https://doi.org/10.1007/978-3-642-74065-7

    Chapter  Google Scholar 

  42. Wen JL, Sun SN, Yuan TQ, Xu F, Sun RC (2013) Fractionation of bamboo culms by autohydrolysis, organosolv delignification and extended delignification: understanding the fundamental chemistry of the lignin during the integrated process. Bioresour Technol 150:278–286. https://doi.org/10.1016/j.biortech.2013.10.015

    Article  PubMed  CAS  Google Scholar 

  43. Xiao X, Bian J, Li MF, Xu H, Xiao B, Sun RC (2014) Enhanced enzymatic hydrolysis of bamboo (Dendrocalamus giganteus Munro) culm by hydrothermal pretreatment. Bioresour Technol 159:41–47. https://doi.org/10.1016/j.biortech.2014.02.096

    Article  PubMed  CAS  Google Scholar 

  44. Leschinsky M, Zuckerstätter G, Weber HK, Patt R, Sixta H (2008) Effect of autohydrolysis of Eucalyptus globulus wood on lignin structure. Part 2, influence of autohydrolysis intensity. Holzforschung 626:653–658. https://doi.org/10.1515/HF.2008.133

    Article  CAS  Google Scholar 

  45. Nakagame S, Chandra RP, Kadla JF, Saddler JN (2011) The isolation, characterization and effect of lignin isolated from steam pretreated Douglas-fir on the enzymatic hydrolysis of cellulose. Bioresour Technol 102(6):4507–4517. https://doi.org/10.1016/j.biortech.2010.12.082

    Article  PubMed  CAS  Google Scholar 

  46. Huang Y, Sun S, Huang C, Yong Q, Elder T, Tu M (2017) Stimulation and inhibition of enzymatic hydrolysis by organosolv lignins as determined by zeta potential and hydrophobicity. Biotechnol Biofuels 10:162. https://doi.org/10.1186/s13068-017-0853-6

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lu X, Zheng X, Li X, Jian Z (2016) Adsorption and mechanism of cellulase enzymes onto lignin isolated from corn stover pretreated with liquid hot water. Biotechnol Biofuels 9:118. https://doi.org/10.1186/s13068-016-0531-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Yang Q, Pan XJ (2015) Correlation between lignin physicochemical properties and inhibition to enzymatic hydrolysis of cellulose. Biotechnol Bioeng 113(6):1213–1224. https://doi.org/10.1002/bit.25903

    Article  PubMed  CAS  Google Scholar 

  49. Wu K, Shi ZJ, Yang H, Liao Z, Yang J (2017) Effect of ethanol organosolv lignin from bamboo on enzymatic hydrolysis of avicel. ACS Sustain Chem Eng 5(2):1721–1729. https://doi.org/10.1021/acssuschemeng.6b02475

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to Dr. Li Shuai and Dr. Yonghui Zhou from Virginia Tech in USA and Brunel University in UK for their carefully revising language of this paper.

Funding

This research was funded by the National Natural Science Foundation of China (No. 31300495), Fujian Provincial Department of Education (Nos. JB13033, JA15181, JA14098), and New Century Excellent Talents Supporting Plan (Min [2015]54). The work is also supported by Postdoctoral Science Foundation of China (2015M571955).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liulian Huang or Xiaolin Luo.

Electronic Supplementary Material

ESM 1

(DOCX 32.8 kb)

ESM 2

(DOCX 95.7 kb)

ESM 3

(DOCX 582 kb)

ESM 4

(DOCX 70.1 kb)

ESM 5

(DOCX 177 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Liu, J., Li, M. et al. Acid-Free Ethanol-Water Pretreatment with Low Ethanol Concentration for Robust Enzymatic Saccharification of Cellulose in Bamboo. Bioenerg. Res. 11, 665–676 (2018). https://doi.org/10.1007/s12155-018-9928-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-018-9928-x

Keywords

Navigation