Skip to main content

Advertisement

Log in

Salinity and Water Stress Effects on Biomass Production in Different Arundo donax L. Clones

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Perennial rhizomatous grasses are regarded as leading energy crops due to their environmental benefits and their suitability to regions with adverse conditions. In this paper, two different experiments were carried out in order to study the salinity (S) and water stress (WS) effects on biomass production in giant reed (Arundo donax L.). In Experiment 1, eight clones of giant reed were subjected to four salinity (S) and water stress (WS) treatments: (1) well watered with non-saline solution, (2) water stress with non-saline solution, (3) well watered with saline solution and 4) water stress with saline solution. In Experiment 2, five clones of giant reed were subjected to increasing S levels in two locations: University of Catania (UNICT-Italy) (1) well watered with non-saline solution and (2) well watered with mild saline solution; and University of Barcelona (UB-Spain) (3) well watered with non-saline solution and (4) well watered with severe saline solution. Photosynthetic and physiological parameters as well as biomass production were measured in these plants. According to our data, giant reed seems to be more tolerant to S than WS. Both stresses mainly affected stomatal closure to prevent dehydration of the plant, eventually decreasing the photosynthetic rate. The differential performance of the giant reed clones was ranked according to their tolerance to S and WS by using the Stress Susceptibility Index. ‘Agrigento’ was the most WS resistant clone and ‘Martinensis’ was the most S resistant. ‘Martinensis’ and ‘Piccoplant’ were found to be the most suitable clones for growing under both stress conditions. Moreover, ‘Fondachello’, ‘Cefalú’ and ‘Licata’ were the most resistant clones to increasing S levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Asat :

light saturated net CO2 assimilation rate (μmol m−2 s−1)

DLP:

complete dry leaves percentage (%)

DM:

dry matter (g)

FC:

field capacity

g s :

stomatal conductance (mol m−2 s−1)

gLA:

green leaf area (m2)

GLP:

complete green leaves percentage (%)

H:

height (cm)

LAR:

leaf area ratio (m2 Kg−1)

LWR:

leaf weight ratio (Kg Kg−1)

NL:

number of leaves

NS:

number of stems

PPFD:

photosynthetic photon flux density

PRG:

perennial rhizomatous grasses

RWC:

relative water content (%)

S :

salinity

SA:

stem area (m2)

SLA:

specific leaf area (m2 Kg−1)

S/R:

shoot/root ratio (g g−1)

SSI:

stress susceptibility index

TDW:

total dry weight (g)

WS :

water stress

YLP:

complete yellow leaves percentage (%)

References

  1. Food and Agriculture Organization of the United Nations (2012) FAO Statistical Yearbook 2012: World food and agriculture. Available at http:// http://reliefweb.int/sites/reliefweb.int/files/resources/i2490e.pdf (accessed 12 March 2014)

  2. Wilhelm C (2014) Salt stress resistance—multisite regulation in focus. J Plant Physiol 171:1. doi:10.1016/j.jplph.2013.11.001

    Article  CAS  Google Scholar 

  3. IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report for the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  4. Cosentino SL, Testa G, Scordia D, Alexopoulou E (2012) Future yields assessment of bioenergy crops in relation to climate change and technological development in Europe. Ital J Agron 7, e22. doi:10.4081/ija.2012.e22

    Article  Google Scholar 

  5. Food and Agriculture Organization of the United Nations (2013) FAOSTAT. Agri-Environmental Indicators. Available at http://faostat3.fao.org (accessed 05 March 2014)

  6. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. doi:10.1146/annurev.arplant.59.032607.092911

    Article  CAS  PubMed  Google Scholar 

  7. Araus JL, Bort J, Steduto P, Villegas D, Royo C (2003) Breeding cereals for Mediterranean conditions: ecophysiological clues for biotechnology application. Ann Appl Biol 142:129–141. doi:10.1111/j.1744-7348.2003.tb00238.x

    Article  Google Scholar 

  8. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250. doi:10.1046/j.0016-8025.2001.00808.x

    Article  CAS  PubMed  Google Scholar 

  9. Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560. doi:10.1093/aob/mcn125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Flexas J, Diaz-Espejo A, Galmés J, Kaldenhoff R, Medrano H, Ribas-Carbo M (2007) Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ 30:1284–1298. doi:10.1111/j.1365-3040.2007.01700.x

    Article  CAS  PubMed  Google Scholar 

  11. Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294. doi:10.1046/j.0016-8025.2001.00814.x

    Article  CAS  PubMed  Google Scholar 

  12. Liu F, Stützel H (2002) Leaf expansion, stomatal conductance, and transpiration of vegetable amaranth (Amaranthus sp.) in response to soil drying. J Am Soc Hortic Sci 127:878–883

    Google Scholar 

  13. Erice G, Louahlia S, Irigoyen JJ, Sánchez-Diaz M, Avice JC (2010) Biomass partitioning, morphology and water status of four alfalfa genotypes submitted to progressive drought and subsequent recovery. J Plant Physiol 167:114–120. doi:10.1016/j.jplph.2009.07.016

    Article  CAS  PubMed  Google Scholar 

  14. Grzesiak MT, Waligórski P, Janowiak F, Marcińska I, Hura K, Szczyrek P, Głąb T (2013) The relations between drought susceptibility index based on grain yield (DSIGY) and key physiological seedling traits in maize and triticale genotypes. Acta Physiol Plant 35:549–565. doi:10.1007/s11738-012-1097-5

    Article  Google Scholar 

  15. U.S. Energy Information Administration (2013) International Energy Outlook (DOE/EIA-0484). Available at http://www.eia.gov/forecasts/ieo/pdf/0484(2013).pdf (accessed 05 June 2014)

  16. United Nations, Department of Economic and Social Affairs, Population Division (2013) World Population Prospects: The 2012 revision, highlights and advance tables. Working Paper No. ESA/P/WP.228

  17. Mantineo M, D’Agosta GM, Copani V, Patanè C, Cosentino SL (2009) Biomass yield and energy balance of three perennial crops for energy use in the semi-arid Mediterranean environment. Field Crop Res 114:204–213. doi:10.1016/j.fcr.2009.07.020

    Article  Google Scholar 

  18. Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenerg 25:335–361. doi:10.1016/S0961-9534(03)00030-8

    Article  Google Scholar 

  19. Cosentino SL, Scordia D, Sanzone E, Testa G, Copani V (2014) Response of giant reed (Arundo donax L.) to nitrogen fertilization and soil water availability in semi-arid Mediterranean environment. Europ J Agron 60:22–32. doi:10.1016/j.eja.2014.07.003

    Article  CAS  Google Scholar 

  20. Papazoglou EG (2007) Arundo donax L. stress tolerance under irrigation with heavy metal aqueous solutions. Desalination 211:304–313. doi:10.1016/j.desal.2006.03.600

    Article  CAS  Google Scholar 

  21. Barney JN, Mann JJ, Kyser GB, Blumwald E, Van Deynze A, DiTomaso JM (2009) Tolerance of switchgrass to extreme soil moisture stress: ecological implications. Plant Sci 177:724–732. doi:10.1016/j.plantsci.2009.09.003

    Article  CAS  Google Scholar 

  22. Kim S, Rayburn L, Voigt T, Parrish A, Lee DK (2012) Salinity effects on germination and plant growth of prairie cordgrass and switchgrass. Bioenerg Res 5:225–235. doi:10.1007/s12155-011-9145-3

    Article  Google Scholar 

  23. Mann JJ, Barney JN, Kyser GB, Di Tomaso JM (2013) Miscanthus × giganteus and Arundo donax shoot and rhizome tolerance of extreme moisture stress. GCB Bioenergy 5:693–700. doi:10.1111/gcbb.12039

    Article  Google Scholar 

  24. Pompeiano A, Vita F, Miele S, Guglielminetti L (2013) Freeze tolerance and physiological changes during cold acclimation of giant reed [Arundo donax (L.)]. Grass Forage Sci 70:168–175. doi:10.1111/gfs.12097

  25. Angelini LG, Ceccarini L, Nassi Di Nasso N, Bonari E (2009) Comparison of arundo donax L. and miscanthus x giganteus in a long-term field experiment in central Italy: analysis of productive characteristics and energy balance. Biomass Bioenerg 33:635–643. doi:10.1016/j.biombioe.2008.10.005

    Article  Google Scholar 

  26. Rossa B, Tuffers AV, Von Willert DJ (1998) Arundo donax L. (Poaceae) — a C3 species with unusually high photosynthetic capacity. Bot Acta 111:216–221. doi:10.1111/j.1438-8677.1998.tb00698.x

  27. Nackley LL, Vogt KA, Kim SH (2014) Arundo donax water use and photosynthetic responses to drought and elevated CO2. Agr Water Manage 136:13–22. doi:10.1016/j.agwat.2014.01.004

    Article  Google Scholar 

  28. Triana F, Nassi o Di Nasso N, Ragaglini G, Roncucci N, Bonari E (2014) Evapotranspiration, crop coefficient and water use efficiency of giant reed (Arundo donax L.) and miscanthus (Miscanthus × giganteus Greef et Deu.) in a Mediterranean environment. GCB Bioenerg 1–9. doi: 10.1111/gcbb.12172

  29. Williams CMJ, Biswas TK, Schrale G, Virtue JG, Heading S (2008) Use of saline land and wastewater for growing a potential biofuel crop (Arundo donax L.). Conference, Melbourne, Australia

  30. Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuel Bioprod Bior 2:26–40. doi:10.1002/bbb.49

    Article  CAS  Google Scholar 

  31. Scordia D, Cosentino SL, Lee JW, Jeffries TW (2011) Dilute oxalic acid pretreatment for biorefining giant reed (Arundo donax L.). Biomass Bioenerg 35:3018–24. doi:10.1016/j.biombioe.2011.03.046

    Article  CAS  Google Scholar 

  32. Scordia D, Cosentino SL, Lee JW, Jeffries TW (2012) Bioconversion of giant reed (Arundo donax L.) hemicellulose hydrolysate to ethanol by Scheffersomyces stipitis CBS6054. Biomass Bioenerg 39:296–305. doi:10.1016/j.biombioe.2012.01.023

    Article  CAS  Google Scholar 

  33. Scordia D, Cosentino SL, Jeffries TW (2013) Enzymatic hydrolysis, simultaneous saccharification and ethanol fermentation of oxalic acid pretreated giant reed (Arundo donax L.). Ind Crop Prod 49:392–99. doi:10.1016/j.indcrop.2013.05.031

    Article  CAS  Google Scholar 

  34. Naghavi MR, Pour Aboughadareh A, Khalili M (2013) Evaluation of drought tolerance indices for screening some of corn (Zea mays L.). Not Sci Biol 5:388–393

    Google Scholar 

  35. Cosentino SL, Copani V, D’Agosta GM, Sanzone E, Mantineo M (2006) First results on evaluation of Arundo donax L. clones collected in Southern Italy. Ind Crop Prod 23:212–222. doi:10.1016/j.indcrop.2005.06.004

    Article  Google Scholar 

  36. Hoagland DR, Arnon DJ (1950) The water-culture method for growing plants without soil. California Agric Exp Station Circ 347:1–32

    Google Scholar 

  37. Fischer RA, Maurer R (1978) Drought resistance in spring wheat cultivars. Grain yield responses. Aust J Agr Res 28:897–912. doi:10.1071/AR9780897

    Article  Google Scholar 

  38. Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043. doi:10.1093/jxb/erj100

    Article  CAS  PubMed  Google Scholar 

  39. Papazoglou EG, Karantounias GA, Vemmos SN, Bouranis DL (2005) Photosynthesis and growth responses of giant reed (Arundo donax L.) to the heavy metals Cd and Ni. Environ Inter 31:243–249. doi:10.1016/j.envint.2004.09.022

    Article  CAS  Google Scholar 

  40. Centritto M, Loreto F, Chartzoulakis K (2003) The use of low [CO2] to estimate diffusional and non-diffusional limitations of photosynthetic capacity of salt-stressed olive saplings. Plant Cell Environ 26:585–594. doi:10.1046/j.1365-3040.2003.00993.x

    Article  Google Scholar 

  41. Yousfi S, Serret MD, Araus JL (2009) Shoot δ15N gives a better indication than ion concentration or Δ13C of genotypic differences in the response of durum wheat to salinity. Funct Plant Biol 36:144–155. doi:10.1071/FP08135

    Article  CAS  Google Scholar 

  42. Cornic G, Massacci A (1996) Leaf photosynthesis under drought stress. In: Baker NR (ed) Photosynthesis and the environment. Kluwer Academic, Dordrech, pp 347–366

    Google Scholar 

  43. Santos CV (2004) Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci Hort 103:93–99. doi:10.1016/j.scienta.2004.04.009

    Article  CAS  Google Scholar 

  44. Munns R, Passioura JB, Guo J, Chazen O, Cramer GR (2000) Water relations and leaf expansion: importance of time scale. J Exp Bot 350:1495–1504. doi:10.1093/jexbot/51.350.1495

    Article  Google Scholar 

  45. Blum A (2005) Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Aust J Agr Res 56:1159–1168. doi:10.1071/AR05069

    Article  Google Scholar 

  46. Calheiros CSC, Quitéiro PVB, Silva G, Crispim LFC, Brix H, Moura SC, Castro PML (2012) Use of constructed wetland systems with Arundo and Sarcocornia for polishing high salinity tannery wastewater. J Environ Manage 95:66–71. doi:10.1016/j.envman.2011.10.003

    Article  CAS  PubMed  Google Scholar 

  47. Munns R, James RA (2003) Screening methods for salt tolerance: a case study with tetraploid wheat. Plant Soil 253:201–218. doi:10.1023/A:1024553303144

    Article  CAS  Google Scholar 

  48. Gorham J (1993) Genetics and physiology of enhanced K/Na discrimination. In: Randal PJ, Delhaize E, Richards RA, Munns R (eds) Genetic aspects of plant mineral nutrition. Kluwer Academic, Dordrecht, pp 151–158

    Chapter  Google Scholar 

  49. Ball MC, Farquhar GD (1984) Photosynthetic and stomatal responses of the grey mangrove, Avicennia marina, to transient salinity conditions. Plant Physiol 74:7–11. doi:10.1104/pp.74.1.7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Ball MC, Chow WS, Anderson JM (1987) Salinity-induced potassium deficiency causes loss of functional photosystem II in leaves of the grey mangrove, Avicennia marina, through depletion of the atrazine-binding polypeptide. Aust J Plant Physiol 14:351–361. doi:10.1071/PP9870351

    Article  CAS  Google Scholar 

  51. Cabrera-Bosquet L, Molero G, Bort J, Nogués S, Araus JL (2007) The combined effect of constant water deficit and nitrogen supply on WUE, NUE and Δ13C in durum wheat potted plants. Ann Appl Biol 151:277–289. doi:10.1111/j.1744-7348.2007.00195.x

    Article  CAS  Google Scholar 

  52. Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 6:269–279. doi:10.1055/s-2004-820867

    Article  CAS  PubMed  Google Scholar 

  53. Li F, Kang S, Zhang J (2004) Interactive effects of elevated CO2, nitrogen and drought on leaf area, stomatal conductance, and evapotranspiration of wheat. Agr Water Manage 67:221–233. doi:10.1016/j.agwat.2004.01.005

    Article  Google Scholar 

  54. Rong-Hua L, Pei-pol G, Baumz M, Grando S, Ceccarelli S (2006) Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agric Sci China 5:751–757. doi:10.1016/S1671-2927(06)60120-X

    Article  Google Scholar 

  55. Angelini LG, Ceccarini L, Bonari E (2005) Biomass yield and energy balance of giant reed (Arundo donax L.) cropped in central Italy as related to different management practices. Europ J Agronomy 22:375–389. doi:10.1016/j.eja.2004.05.004

    Article  Google Scholar 

  56. Nassi Di Nasso N, Roncucci N, Triana F, Tozzini C, Ragaglini G, Bonari E (2011) Productivity of giant reed (Arundo donax L.) and miscanthus (Miscanthus x giganteus Greef et Deuter) as energy crops: growth analysis. Ital J Agron 6:141–147. doi:10.4081/ija.2011.e22

    Google Scholar 

Download references

Acknowledgments

We acknowledge the support of OPTIMA project (Optimization of perennial grasses for biomass production in the Mediterranean area, Grant Agreement no. 289642) and CONICYT (Comisión Nacional de Ciencia y Tecnología) BecasChile 72120250 grant for financial support to ES.

Author Contribution

Study conception and design: ES, DS, SC, SN; Acquisition of data: ES, DS, GL, CA; Analysis and interpretation of data: ES, DS, SN; Drafting of manuscript: ES; Critical revision: DS, SC, SN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Sánchez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 14 kb)

ESM 2

(DOCX 170 kb)

ESM 3

(DOCX 14 kb)

ESM 4

(DOCX 52 kb)

ESM 5

(DOCX 91 kb)

ESM 6

(DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez, E., Scordia, D., Lino, G. et al. Salinity and Water Stress Effects on Biomass Production in Different Arundo donax L. Clones. Bioenerg. Res. 8, 1461–1479 (2015). https://doi.org/10.1007/s12155-015-9652-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-015-9652-8

Keywords

Navigation