Skip to main content
Log in

Dominated Effect Analysis of the Channel Size of Silica Support Materials on the Catalytic Performance of Immobilized Lipase Catalysts in the Transformation of Unrefined Waste Cooking Oil to Biodiesel

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Three mesoporous silica materials with various channel sizes and structures were employed to prepare immobilized lipase catalysts for the transesterification of unrefined wasted cooking oil (UWCO) to biodiesel at room temperature. The channel size of support material was found to be the key point to obtain high initial specific activity and high sustainability of activity of the immobilized lipase catalysts. A SBA-15 material with appropriate channel size (14.0 nm) demonstrates the best capacity of lipase. The immobilized catalyst with the SBA-15 material shows much higher activity and sustainability of activity than the immobilized catalysts with a MCM-41 material (channel size 1.8 nm) and a mesostructured cellular foam (MCF) material (channel size 28.0 nm) as support materials in the transformation of UWCO to biodiesel. After 60 h of reaction at 28 °C, a fatty acid methyl ester (FAME) yield up to 80.1 and 71.8 % of initial specific activity can be achieved using SBA-15-immobilized lipase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kulkarni MG, Dalai AK (2006) Waste cooking oil an economical source for biodiesel: a review. Ind Eng Chem Res 45:2901–2913

    Article  CAS  Google Scholar 

  2. Phan AN, Phan TM (2008) Biodiesel production from waste cooking oils. Fuel 87:3490–3496

    Article  CAS  Google Scholar 

  3. Sivaramakrishnan R, Muthukumar K (2012) Production of methyl ester from Oedogonium sp. oil using immobilized isolated novel Bacillus sp. lipase. Energy Fuels 26:6387–6392

    Article  CAS  Google Scholar 

  4. Ragit SS, Mohapatra SK, Kundu K, Gill P (2011) Optimization of neem methyl ester from transesterification process and fuel characterization as a diesel substitute. Biomass Bioenergy 35:1138–1144

    Article  CAS  Google Scholar 

  5. Du ZX, Tang Z, Wang HJ, Zeng JL, Chen YF, Min EZ (2013) Research and development of a sub-critical methanol alcoholysis process for producing biodiesel using waste oils and fats. Chin J Catal 34:101–115

    Article  CAS  Google Scholar 

  6. Zhang Y, Dubé MA, Mclean DD, Kates M (2003) Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresour Technol 89:1–16

    Article  CAS  PubMed  Google Scholar 

  7. Maddikeri GL, Pandi AB, Gogate PR (2012) Intensification approaches for biodiesel synthesis from waste cooking oil: a review. Ind Eng Chem Res 51:14610–14628

    Article  CAS  Google Scholar 

  8. Srilatha K, Issariyakul T, Lingaiah N, Prasad PSS, Kozinski J, Dalai AK (2010) Efficient esterification and transesterification of used cooking oil using 12-tungstophosphoric acid (TPA)/Nb2O5 catalyst. Energy Fuels 24:4748–4755

    Article  CAS  Google Scholar 

  9. Ahmad AL, Mat NHY, Derek CJC, Lim JK (2011) Microalgae as a sustainable energy source for biodiesel production: a review. Renewable Sustainable Energy Rev 15:584–593

    Article  CAS  Google Scholar 

  10. Zhang Y, Dubé MA, Mclean DD, Kates M (2003) Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour Technol 90:229–240

    Article  CAS  PubMed  Google Scholar 

  11. Wu WH, Foglia TA, Marmer WN, Phillips JG (1999) Optimizing production of ethyl esters of grease using 95 % ethanol by response surface methodology. J Am Oil Chem Soc 76:517–521

    Article  CAS  Google Scholar 

  12. Hsu A, Jones KC, Foglia TA, Marmer WN (2004) Continuous production of ethyl esters of grease using an immobilized lipase. J Am Oil Chem Soc 81:749–752

    Article  CAS  Google Scholar 

  13. Véras IC, Silva FAL, Ferrão-Gonzales AD, Moreau VH (2011) One-step enzymatic production of fatty acid ethyl ester from high-acidity waste feedstocks in solvent-free media. Bioresour Technol 102:9653–9658

    Article  PubMed  Google Scholar 

  14. Hsu A, Jones KC, Marmer WN (2001) Production of alkyl esters from tallow and grease using lipase immobilized in a phyllosilicate sol–gel. J Am Oil Chem Soc 78:585–588

    Article  CAS  Google Scholar 

  15. Shen Y, Zhang HD, Zheng XX, Zhang XM, Chen LG (2012) Production of biodiesel from waste cooking oil by lipase immobilized in mesoporous cellular foam support. CIESC J 63:1888–1892

    Google Scholar 

  16. Noureddini H, Gao X, Philkana R (2005) Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour Technol 96:769–777

    Article  CAS  PubMed  Google Scholar 

  17. Hartmann M (2008) Ordered mesoporous materials for bioadsorption and biocatalysis. Chem Mater 17:4577–4593

    Article  Google Scholar 

  18. Hudson S, Magner E, Cooney J, Hodnett BK (2005) Methodology for the immobilization of enzymes onto mesoporous materials. J Phys Chem B 109:19496–19506

    Article  CAS  PubMed  Google Scholar 

  19. Diaz JF, Balkus JKJ (1996) Enzyme immobilization in MCM-41 molecular sieve. J Mol Catal B Enzym 115–126

  20. Hudson S, Cooney J, Magner E (2008) Proteins in mesoporous silicates. Angew Chem Int Ed 47:8582–8594

    Article  CAS  Google Scholar 

  21. Katiyar A, Ji L, Smirniotis P, Pinto NG (2005) Protein adsorption on the mesoporous molecular sieve silicate SBA-15: effects of pH and pore size. J Chromatogr A 1069:119–126

    Article  CAS  PubMed  Google Scholar 

  22. Kalantari M, Kazemeini M, Tabandeh F, Arpanaei A (2012) Lipase immobilisation on magnetic silica nanocomposite particles: effects of the silica structure on properties of the immobilised enzyme. J Mater Chem 22:8385–8393

    Article  CAS  Google Scholar 

  23. Gao F, Ma GH (2012) Effects of microenvironment on supported enzymes. Top Catal 55:1114–1123

    Article  CAS  Google Scholar 

  24. Hanefeld U, Gardossi L, Magner E (2009) Understanding enzyme immobilization. Chem Soc Rev 38:453–468

    Article  CAS  PubMed  Google Scholar 

  25. Zhang HD, Shen Y (2012) Straight chain alkane-assisted synthesis of mesoporous silica. Mater Lett 75:183–185

    Article  CAS  Google Scholar 

  26. Zhang HD, Wang YM, Lü K, Hensen EJM, Zhang L, Zhang WH, Abbenhuis HCL, Li C, van Santen RA (2012) Hierarchical fabrication of silica cocoon with hexagonally ordered channel constructed wall via an emulsion-assisted process. Micropor Mesopor Mater 150:90–95

    Article  CAS  Google Scholar 

  27. Zhao D, Feng J, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Sci 279:548–552

    Article  CAS  Google Scholar 

  28. Wan Y, Zhao DY (2007) On the controllable soft-templating approach to mesoporous silicates. Chem Rev 107:2821–2860

    Article  CAS  PubMed  Google Scholar 

  29. Pauwels B, Tendeloo GV, Thoelen C, Rhijn WV, Jacobs PA (2001) Structure determination of spherical MCM-41 particles. Adv Mater 13:1317–1320

    Article  CAS  Google Scholar 

  30. Lebedev OI, Tendeloo G, Collart VO, Cool P, Vansant EF (2004) Structure and microstructure of nanoscale mesoporous silica spheres. Solid State Sci 6:489–498

    Article  CAS  Google Scholar 

  31. Grün M, Unger KK, Matsumoto A, Tsutsumi K (1999) Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology. Micropor Mesopor Mater 27:207–216

    Article  Google Scholar 

  32. Zhao DY, Huo QS, Feng J, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120:6024–6036

    Article  CAS  Google Scholar 

  33. Tendeloo GV, Lebedev OI, Collart O, Cool P, Vansant EF (2003) Structure of nanoscale mesoporous silica spheres? J Phys: Condensed Matter 15:S3037–3046

    Google Scholar 

  34. Fan J, Lei J, Wang L, Yu C, Tu B, Zhao DY (2003) Rapid and high-capacity immobilization of enzymes based on mesoporous silicas with controlled morphologies. Chem Commun 34:2140–2141

    Article  Google Scholar 

  35. Zhang HD, Wang YM, Zhang L, Gerritsen G, Abbenhuis HCL, van Santen RA, Li C (2008) Enantioselective epoxidation of β-methylstyrene catalyzed by immobilized Mn(salen) catalysts in different mesoporous silica supports. J Catal 256:226–236

    Article  CAS  Google Scholar 

  36. McNeff CV, McNeff LC, Yan BW, Nowlan DT, Rasmussen M, Gyberg AE, Krohn BJ, Fedie RL, Hoye TR (2008) A continuous catalytic system for biodiesel production. Appl Catal A Gen 343:39–49

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the National Natural Science Foundation of China (NSFC U1362105, 21306233), the Science Research Project (KJ130729, KJ130702) of Chongqing Education Commission, the Chongqing Science and Technology Foundation (cstc2013jcyjA50007, cstc2014yykfB90002, jcsf121-2012-02-1), and the Chongqing 100 leading scientists promotion project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haidong Zhang or Yu Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zou, Y., Shen, Y. et al. Dominated Effect Analysis of the Channel Size of Silica Support Materials on the Catalytic Performance of Immobilized Lipase Catalysts in the Transformation of Unrefined Waste Cooking Oil to Biodiesel. Bioenerg. Res. 7, 1541–1549 (2014). https://doi.org/10.1007/s12155-014-9492-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-014-9492-y

Keywords

Navigation