Skip to main content

Advertisement

Log in

Simulation of Biomass and Nitrogen Dynamics in Perennial Organs and Shoots of Miscanthus × Giganteus Using the STICS Model

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Biomass production by perennial plants promises to increase land use efficiency and reduce greenhouse gas emissions from cropping systems dedicated to bioenergy production. The modelling of both biomass production and the environmental impacts of these systems over the long term is needed in order to evaluate their sustainability. New equations have been added to the STICS soil-crop-atmosphere model to provide a better description of perennial organs and their relationship with non-perennial ones, corresponding to the rhizomes and shoots, respectively in the Miscanthus × giganteus case study. Their description is intended to be generic for perennial plants, supported by the functional approach of STICS. The new version of STICS 8 was calibrated using published data and then validated against independent data. It was able to simulate the biomass and nitrogen content of the shoots (with a model efficiency of 0.95 and 0.70, respectively) and reproduce the dynamic of biomass and nitrogen in perennial organs (with a model efficiency of 0.41 and 0.63, respectively). Some of the model’s improvements are discussed. Modifications to the model allowed simulations of the effect of cultural practices, such as nitrogen fertilisation or harvest date, on the biomass and nitrogen content of rhizomes and shoots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amougou N, Bertrand I, Machet JM, Recous S (2011) Quality and decomposition in soil of rhizome, root and senescent leaf from Miscanthus x giganteus, as affected by harvest date and N fertilization. Plant Soil 338:83–97

    Article  CAS  Google Scholar 

  2. Amougou N, Bertrand I, Cadoux S, Recous S (2012) Miscanthus x giganteus leaf senescence, decomposition and C and N inputs to soil. GCB Bioenergy 4:698–707

    Article  CAS  Google Scholar 

  3. Avice JC, Lemaire G, Ourry A, Boucaud J (1997) Effects of the previous shoot removal frequency on subsequent shoot regrowth in two Medicago sativa L. cultivars. Plant Soil 188:189–198

    Article  CAS  Google Scholar 

  4. Beale CV, Long SP (1995) Can perennial C4 grasses attain high efficiencies of radiant energy conversion in cool climates? Plant Cell Environ 18:641–650

    Article  Google Scholar 

  5. Beale CV, Long SP (1997) Seasonal dynamics of nutrient accumulation and partitioning in the perennial C4-grasses Miscanthus x giganteus and Spartina cynosuroides. Biomass Bioenergy 12:419–428

    Article  Google Scholar 

  6. Beaudoin N, Launay M, Sauboua E, Ponsardin G, Mary B (2008) Evaluation of the soil plant model STICS over 8 years against the “on farm” database of Bruyères catchment. Eur J Agron 29:46–57

    Article  Google Scholar 

  7. Brisson N, Mary B, Ripoche D, Jeuffroy MH, Ruget F, Nicoullaud B, Gate P, Devienne-Barret F, Antonioletti R, Durr C, Richard G, Beaudoin N, Recous S, Tayot X, Plenet D, Cellier P, Machet JM, Meynard JM, Delécolle R (1998) STICS: a generic model for the simulation of crops and their water and nitrogen balances. I Theory and parameterization applied to wheat and corn. Agronomie 18:311–346

    Article  Google Scholar 

  8. Brisson N, Gary C, Justes E, Roche R, Mary B, Ripoche D, Zimmer D, Sierra J, Bertuzzi P, Burger P, Bussière F, Cabidoche YM, Cellier P, Debaeke P, Gaudillère JP, Hénault C, Maraux F, Seguin B, Sinoquet H (2003) An overview of the plant model STICS. Eur J Agron 18:309–332

    Article  Google Scholar 

  9. Brisson N, Launay M, Mary B, Beaudoin N (2008) Conceptual basis, formalisations and parameterization of the STICS plant model. QUAE, Versailles

    Google Scholar 

  10. Cadoux S, Rich AB, Yates NE, Machet JM (2012) Nutrient requirements of Miscanthus x gianteus: conclusions from a review of published studies. Biomass Bioenergy 38:14–22

    Article  CAS  Google Scholar 

  11. Cadoux S, Ferchaud F, Demay C, Boizard H, Machet JM, Fourdinier E, Preudhomme M, Chabbert B, Gosse G, Mary B (2013) Implications of productivity and nutrient requirements on greenhouse gas balance of annual and perennial bioenergy crops. GCB Bioenergy. doi:10.1111/gcbb.12065

    Google Scholar 

  12. Christian DG, Poulton PR, Riche AB, Yates NE, Todd AD (2006) The recovery over several seasons of 15N-labelled fertilizer applied to Miscanthus x giganteus ranging from 1 to 3 years old. Biomass Bioenergy 30:125–133

    Article  CAS  Google Scholar 

  13. Clifton-Brown JC, Jones MB (1997) The thermal response of leaf expansion rate in genotypes of the C4-grasses Miscanthus: an important factor in determining the potential productivity of different genotypes. J Exp Bot 48:1573–1581

    CAS  Google Scholar 

  14. Clifton-Brown JC, Neilson B, Lewandowski I, Jones MB (2000) The modelled productivity of Miscanthus x giganteus (GREEF et DEU) in Ireland. Ind Crop Prod 12:97–109

    Article  Google Scholar 

  15. Cosentino SL, Patanè C, Sanzone E, Copani V, Foti S (2007) Effects of soil water content and nitrogen supply on the productivity of Miscanthus x giganteus Greef et Deu. in a Mediterranean environment. Ind Crop Prod 25:75–88

    Article  Google Scholar 

  16. de Souza AP, Arundale RA, Dohleman FG, Long SP, Buckeridge MS (2013) Will the exceptional productivity of Miscanthus x giganteus increase further under rising atmospheric CO2? Agric For Meteorol 171:82–92

    Article  Google Scholar 

  17. De Wit CT (1978) Simulation of assimilation, respiration and transpiration of crops. Pudoc, Wageningen

    Google Scholar 

  18. Dondini M, Hastings A, Saiz G, Jones M, Smith P (2009) The potential of Miscanthus to sequester carbon in soils; comparing field measurements in Carlow, Ireland to model predictions. GCB Bioenergy 1:413–425

    Article  CAS  Google Scholar 

  19. Dohleman FG, Heaton EA, Arundale RA, Long SP (2012) Seasonal dynamics o above- and below-ground biomass and nitrogen partitioning in Miscanthus × giganteus and Panicum virgatum across three growing seasons. GCB Bioenergy 4:534–544

    Article  CAS  Google Scholar 

  20. Dorsainvil F (2002) Evaluation par modélisation de l’impact environnemental des cultures intermédiaires sur les bilans d’eau et d’azote. Thèse, INA-PG, Paris, France

  21. Greenwood DJ, Lemaire G, Gosse G, Cruz P, Draycott A, Neeteson JJ (1990) Decline in percentage N of C3 and C4 crops with increasing plant mass. Ann Bot 66:425–436

    CAS  Google Scholar 

  22. Hastings A, Clifton-Brown J, Wattenbach M, Mitchell CP, Smith P (2009) The development of MISCANFOR, a new Miscanthus plant growth model: towards more robust yield predictions under different climatic and soil conditions. GCB Bioenergy 1:154–170

    Article  Google Scholar 

  23. Himken M, Lammel J, Neukirchen D, Czypionka-Krause U, Olfs HW (1997) Cultivation of Miscanthus under West European conditions: seasonal changes in dry matter production, nutrient uptake and remobilization. Plant Soil 189:117–126

    Article  CAS  Google Scholar 

  24. Imsande J, Tourraine B (1994) N Demand and the regulation of nitrate uptake. Plant Physiol 105:3–7

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Jing Q, Conijn SJG, Jongschaap REE, Binbradan PS (2012) Modeling the productivity of energy crops in different agro-ecological environments. Biomass Bioenergy 46:618–633

    Article  Google Scholar 

  26. Jørgensen U, Mortensen M, Ohlsson C (2003) Light interception and dry matter conversion efficiency of miscanthus genotypes estimated from spectral reflectance measurements. New Phytol 157:263–270

    Article  Google Scholar 

  27. Keating BA, Carberry PS, Hammer GL, Probert ME, Robertson MJ, Holzworth D, Huth NI, Hargreaves JNG, Meinke H, Hochman Z, McLean G, Verburg K, Snow V, Dimes JP, Silburn M, Wang E, Brown S, Bristow KL, Asseng S, Chapman S, McCown RL, Freebairn DM, Smith CJ (2003) An overview of APSIM, a model designed for farming systems simulation. Eur J Agron 18:267–288

    Article  Google Scholar 

  28. Kiniry JR, Tischler CR, Van Esbroeck GA (1999) Radiation use efficiency and leaf CO2 exchange for diverse C4 grasses. Biomass Bioenergy 17:95–112

    Article  Google Scholar 

  29. Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus European experience with a novel energy crop. Biomass Bioenergy 19:209–227

    Article  CAS  Google Scholar 

  30. Miguez FE, Zhu X, Humphries S, Bollero GA, Long SP (2009) A semimechanistic model predicting the growth and production of the bioenergy plant Miscanthus × giganteus: description, parameterization and validation. GCB Bioenergy 1:282–296

    Article  Google Scholar 

  31. Millard P, Hester A, Wendler R, Baillie G (2001) Interspecific defoliation responses of trees depend on sites of winter nitrogen storage. Funct Ecol 15:535–543

    Article  Google Scholar 

  32. Nair SS, Kang S, Zhang X, Miguez FE, Izaurralde RC, Post WM, Dietze MC, Lynd LR, Wullschleger SD (2012) Bioenergy plant models: descriptions, data requirements, and future challenges. GCB Bioenergy 4:620–633

    Article  Google Scholar 

  33. Ng TL, Eheart JW, Miguez F (2010) Modeling Miscanthus in the Soil and Water Assessment Tool (SWAT) to simulate its water quality effects as a bioenergy crop. Environ Sci Technol 44:7138–7144

    Article  CAS  PubMed  Google Scholar 

  34. Partala A, Mela T, Esala M, Ketoja E (2001) Plant recovery of 15N-labelled nitrogen applied to reed canary grass grown for biomass. Nutr Cycl Agroecosyst 61:273–281

    Article  CAS  Google Scholar 

  35. Plénet D, Lemaire G (1999) Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical N concentration. Plant Soil 216:65–82

    Article  Google Scholar 

  36. Pogson M (2011) Modelling Miscanthus yields with low resolution input data. Ecol Model 222:3849–3853

    Article  Google Scholar 

  37. Schjoerring JK, Bock JGH, Gammelvind L, Jensen CR, Mogensen VO (1995) Nitrogen incorporation and remobilization in different shoot components of field-grown winter oilseed rape (Brassica napus L.) as affected by rate of nitrogen application and irrigation. Plant Soil 177:255–264

    Article  CAS  Google Scholar 

  38. Sinclair TR, Muchow RC (1999) Radiation use efficiency. Adv Agron 65:215–265

    Article  Google Scholar 

  39. Strullu L, Cadoux S, Preudhomme M, Jeuffroy MH, Beaudoin N (2011) Biomass production, nitrogen accumulation and remobilisation by Miscanthus x giganteus as influenced by nitrogen stocks in belowground organs. Field Crop Res 121:381–391

    Article  Google Scholar 

  40. Strullu L, Cadoux S, Beaudoin N, Jeuffroy MH (2013) Influence of belowground nitrogen stocks on light interception and conversion of Miscanthus × giganteus. Eur J Agron 47:1–10

    Article  Google Scholar 

  41. Tayot X, Chartier M, Varlet-Grancher C, Lemaire G (1994) Potential above-ground dry matter production of Miscanthus in North-Centre France compared to sweet sorghum. Biomass Energy Environ Agric Ind 1:556–564

    Google Scholar 

  42. Teixeira EI, Moot DJ, Brown HE, Pollock KM (2007) How does defoliation management impact on yield, canopy forming processes and light interception of lucerne (Medicago sativa L.) crops? Eur J Agron 27:154–164

    Article  Google Scholar 

  43. Thornton B, Millard P (1997) Increased defoliation frequency depletes remobilization of nitrogen for leaf growth in grasses. Ann Bot 80:89–95

    Article  CAS  Google Scholar 

  44. Tuck G, Glendining MJ, Smith P, House JI, Wattenbach M (2006) The potential distribution of bioenergy crops in Europe under present and future climate. Biomass Bioenergy 30:183–197

    Article  Google Scholar 

  45. van Heerwaarden LM, Toet S, Aerts R (2003) Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization. J Ecol 91:1060–1070

    Article  Google Scholar 

  46. van Heerwaarden LM, Toet S, van Logstestijn RSP, Aerts R (2005) Internal nitrogen dynamics in the graminoid Molinia caerulea under higher N supply and elevated CO2 concentrations. Plant Soil 277:255–264

    Article  CAS  Google Scholar 

  47. Van Ittersum MK, Leffelaar PA, van Keulen H, Kropff MJ, Bastiaans L, Goudriaan J (2003) On approaches and applications of the Wageningen plant models. Eur J Agron 18:231–234

    Google Scholar 

  48. Willmott CJ (1981) On the validation of models. Phys Geogr 2:184–194

    Google Scholar 

Download references

Acknowledgments

The assistance provided by C. Demay, C. Dominiarczyk, J. Haxaire, E. Mignot, M. Preudhomme and A. Teixeira and the experimental unit around the acquisition of data is gratefully acknowledged. The authors gratefully thank M. Launay for the time spent for constructive discussions on the model. The authors thank all physiologists and modellers around the world whose work and publications allow the modelling of plant processes. This research has been funded by OSEO as part of the Futurol project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mary.

Appendix: Model Equations

Appendix: Model Equations

  1. 1.

    Perennial organs (Rhizome and associated coarse roots in 0–25 cm depth)

    • Remobilisable biomass and nitrogen

      $$ \mathrm{RESPERENNE}=\mathrm{PROPRESP}\times \mathrm{MAPERENNE} $$
      (1)
      $$ \mathrm{QNRESPERENNE}=\mathrm{PROPRESPN}\times \mathrm{QNPERENNE} $$
      (2)
    • Non remobilisable biomass and nitrogen

      $$ \mathrm{RESPERENNESTRUC}=\left(1-\mathrm{PROPRESP}\right)\times \mathrm{MAPERENNE} $$
      (3)
      $$ \mathrm{QNRESPERENNESTRUC}=\left(1-\mathrm{PROPRESPN}\right)\times \mathrm{QNPERENNE} $$
      (4)
    • Death

      $$ \Delta \mathrm{PERENNESEN}=\mathrm{TAUXMORTP}\times \mathrm{MAPERENNE} $$
      (5)
      $$ \Delta \mathrm{QNPERENNESEN}=\Delta \mathrm{PERENNESEN}\times \frac{\mathrm{QNPERENNE}}{\mathrm{MAPERENNE}} $$
      (6)
  2. 2.

    Non-perennial organs (stems and leaves)

    • Maximal temporary reserves

      $$ \mathrm{RESTEMPMAX}=\mathrm{PROPRES}\times \frac{\mathrm{MAFEUIL}\mathrm{VERTE}}{\mathrm{MAFEUIL}}\times \mathrm{MASECVEG} $$
      (7)
    • C/N ratio and nitrogen contents

      $$ \mathrm{CSURNFEUIL}=\frac{\mathrm{PARAZOFMORTE}}{\mathrm{NNI}} $$
      (8)
      $$ \mathrm{CSURNTIGE}=\frac{\mathrm{PARAZOTMORTE}}{\mathrm{NNI}} $$
      (9)
      $$ \mathrm{QNVEGSTRUC}=\left[\frac{\mathrm{CFEUIL}}{\mathrm{CSURNFEUIL}}\right]+\left[\frac{\mathrm{CTIGESTRUC}}{\mathrm{CSURNTIGE}}\right] $$
      (10)
      $$ \mathrm{QNRESTEMP}=\mathrm{QNVEG}-\mathrm{QNVEGSTRUC} $$
      (11)
    • Biomass and nitrogen remobilisation

      $$ \Delta \mathrm{REMOBIL}=\mathrm{EFREMOBIL}\times \Delta \mathrm{REMOBIL}\mathrm{BRUT} $$
      (12)
      $$ \varDelta CO2\mathrm{RESPERENNE}=0.40\times \left(1-\mathrm{EFREMOBIL}\right)\times \Delta \mathrm{REMOBILBRUT} $$
      (13)
      $$ \Delta \mathrm{REMOBILN}=\Delta \mathrm{REMOBILBRUT}\times \frac{\mathrm{QNRESPERENNE}}{\mathrm{RESPERENNE}} $$
      (14)
    • Temporary reserves

      $$ \mathrm{RESTEMP}=\mathrm{MASECVEG}-\mathrm{MAFEUIL}-\mathrm{MATIGESTRUC}-\mathrm{MAENFRUIT} $$
      (15)
      $$ \Delta \mathrm{REMOBSEN}={\displaystyle \sum_{J=1}^n\varDelta \mathrm{MS}(J)\cdot \left(1-\mathrm{RATIOSEN}\right)\cdot \mathrm{PFEUILVERTE}(J)} $$
      (16)

      with n = leaf lifespan

  3. 3.

    Transfer and allocation

    • Biomass transfer and its allocation:

      $$ \Delta \mathrm{RESTEMP}=\mathrm{RESTEMP}-\mathrm{RESTEMPMAX} $$
      (17)
      $$ \begin{array}{ll}\mathrm{if}\hfill & \begin{array}{ll}\mathrm{RESPERENNE}<\mathrm{PROPRESP}\times \mathrm{MAPERENNE}\hfill & \mathrm{then}\hfill \end{array}\hfill \\ {}\hfill & \Delta \mathrm{RESPER}=\Delta \mathrm{RESTEMP}\hfill \\ {}\hfill & \Delta \mathrm{RESPSTRUC}=0\hfill \\ {}\mathrm{else}\hfill & \hfill \\ {}\hfill & \Delta \mathrm{RESPER}=\mathrm{PROPRESP}\times \Delta \mathrm{RESTEMP}\hfill \\ {}\hfill & \Delta \mathrm{RESPSTRUC}=\left(1-\mathrm{PROPRESP}\right)\times \Delta \mathrm{RESTEMP}\hfill \\ {}\mathrm{endif}\hfill & \hfill \end{array} $$
      (18)
    • Nitrogen transfer and its allocation:

      $$ \Delta \mathrm{RESTEMPN}=\Delta \mathrm{RESPSTRUC}\times \mathrm{CNRESPSTRUC} $$
      (19)
      $$ \Delta \mathrm{RESTEMP}\mathrm{N}=\Delta \mathrm{RESTEMP}\times \frac{\mathrm{QNRESTEMP}}{\mathrm{RESTEMP}} $$
      (20)
      $$ \begin{array}{ll}\mathrm{if}\hfill & \begin{array}{ll}\mathrm{RESPERENNE}<\mathrm{RESPERENNEMAX}\hfill & \mathrm{then}\hfill \end{array}\hfill \\ {}\hfill & \Delta \mathrm{RESPSTRUC}\mathrm{N}=0\hfill \\ {}\hfill & \Delta \mathrm{RESPERN}=\Delta \mathrm{RESTEMPN}\hfill \\ {}\mathrm{else}\hfill & \hfill \\ {}\hfill & \Delta \mathrm{RESPSTRUC}\mathrm{N}=\Delta \mathrm{RESPSTRUC}\times \mathrm{CNRESPSTRUC}\hfill \\ {}\hfill & \Delta \mathrm{RESPERN}=\Delta \mathrm{RESTEMPN}-\Delta \mathrm{RESPSTRUC}\mathrm{N}\hfill \\ {}\mathrm{endif}\hfill & \hfill \end{array} $$
      (21)
      $$ \begin{array}{llll}\mathrm{if}\hfill & \Delta \mathrm{RESPERN}<0\hfill & \mathrm{then}\hfill & \mathrm{TRANSFN}=-\Delta \mathrm{RESPERN}\hfill \end{array} $$
      (22)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strullu, L., Beaudoin, N., de Cortàzar Atauri, I.G. et al. Simulation of Biomass and Nitrogen Dynamics in Perennial Organs and Shoots of Miscanthus × Giganteus Using the STICS Model. Bioenerg. Res. 7, 1253–1269 (2014). https://doi.org/10.1007/s12155-014-9462-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-014-9462-4

Keywords

Navigation