Skip to main content

Advertisement

Log in

A phase 2, open-label, multi-center study to evaluate the efficacy and safety of 99mTc-TRODAT-1 SPECT to detect Parkinson’s disease

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

A Correction to this article was published on 10 January 2020

This article has been updated

Abstract

Objectives

To assess the efficacy and safety of 99mTc-TRODAT-1 SPECT in diagnosing Parkinson’s disease (PD).

Methods

99mTc-TRODAT-1 SPECT imaging was performed in 34 healthy controls and 96 PD patients 2.5 h later after injection. The striatal image was evaluated visually and semi-quantitively. Sensitivity and specificity of 99mTc-TRODAT-1 SPECT were analyzed according to Hoehn and Yahr scale (HYS). Based on HYS, the PD patients were divided into mild (HYS 1–2) and moderate (HYS 3–5) groups. The uptake ratios of striatum (ST) and cerebellum (CB) in contralateral, ipsilateral and bilateral striatum in different groups were calculated and analyzed. The safety was assessed.

Results

The sensitivity and specificity of 99mTc-TRODAT-1 SPECT to discriminate PD patients from healthy subjects were 98.96% and 94.12% and it has perfect agreement with HYS (κ = 0.94, p < 0.001). The sensitivity to diagnose mild and moderate PD was 43.42% and 95% separately. The uptake ratio in PD patients was significantly lower than that in healthy controls (1.37 ± 0.13 vs 1.68 ± 0.18, p < 0.001). And the uptake ratio in contralateral side was markedly reduced in unilateral PD patients as compared with the ipsilateral side (1.50 ± 0.20 vs 1.46 ± 0.21, p < 0.001). The striatal uptakes in affected striatum and bilateral striatum were reduced with increasing disease severity between healthy control versus mild stage versus moderate stage in the affected striatum and bilateral striatum in PD patients. No serious adverse events or death was observed after injecting 99mTc-TRODAT-1.

Conclusion

We demonstrated that 99mTc-TRODAT-1 was a safety radiotracer which can be used in clinic to diagnose PD using SPECT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 10 January 2020

    The corresponding author of the article would like to remove “Jian Wang” in the author group.

References

  1. Tolosa E, Wenning G, Poewe W. The diagnosis of Parkinson's disease. Lancet Neurol. 2006;5(1):75–86.

    PubMed  Google Scholar 

  2. Marsden CD. Parkinson's disease. Lancet. 1990;335(8695):948–52.

    CAS  PubMed  Google Scholar 

  3. Wilson JM, Levey AI, Rajput A, Ang L, Guttman M, Shannak K, et al. Differential changes in neurochemical markers of striatal dopamine nerve terminals in idiopathic Parkinson’s disease. Neurology. 1996;47(3):718–26.

    CAS  PubMed  Google Scholar 

  4. Brooks DJ. Molecular imaging of dopamine transporters. Ageing Res Rev. 2016;30:114–21.

    CAS  PubMed  Google Scholar 

  5. Berti V, Pupi A, Mosconi L. PET/CT in diagnosis of movement disorders. Ann N Y Acad Sci. 2011;1228(1):93–108.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hwang WJ, Yao WJ, Wey SP, Ting G. Reproducibility of 99mTc-TRODAT-1 SPECT measurement of dopamine transporters in Parkinson's disease. J Nucl Med. 2004;45(2):207–13.

    CAS  PubMed  Google Scholar 

  7. Kung MP, Stevenson DA, Plossl K, Meegalla SK, Beckwith A, Essman WD, et al. [99mTc]TRODAT-1: a novel technetium-99m complex as a dopamine transporter imaging agent. Eur J Nucl Med. 1997;24(4):372–80.

    CAS  PubMed  Google Scholar 

  8. Meegalla S, Plossl K, Kung MP, Chumpradit S, Stevenson DA, Frederick D, et al. Tc-99m-labeled tropanes as dopamine transporter imaging agents. Bioconjug Chem. 1996;7(4):421–9.

    CAS  PubMed  Google Scholar 

  9. Kung HF, Kim HJ, Kung MP, Meegalla SK, Plossl K, Lee HK. Imaging of dopamine transporters in humans with technetium-99m TRODAT-1. Eur J Nucl Med. 1996;23(11):1527–30.

    CAS  PubMed  Google Scholar 

  10. Chen YK, Liu RS, Huang WS, Wey SP, Ting G, Liu JC, et al. The role of dopamine transporter imaging agent [99mTc]TRODAT-1 in hemi-parkinsonism rat brain. Nucl Med Biol. 2001;28(8):923–8.

    CAS  PubMed  Google Scholar 

  11. Fallahi B, Esmaeili A, Beiki D, Oveisgharan S, Noorollahi-Moghaddam H, Erfani M, et al. Evaluation of (99m)Tc-TRODAT-1 SPECT in the diagnosis of Parkinson's disease versus other progressive movement disorders. Ann Nucl Med. 2016;30(2):153–62.

    CAS  PubMed  Google Scholar 

  12. Ma KH, Lee JK, Huang SY, Yeh CB, Shen YC, Shen LH, et al. Simultaneous [99mTc]TRODAT-1 and [123I]ADAM brain SPECT in nonhuman primates. Mol Imaging Biol. 2009;11(4):253–62.

    PubMed  Google Scholar 

  13. Huang WS, Lin SZ, Lin JC, Wey SP, Ting G, Liu RS. Evaluation of early-stage Parkinson’s disease with 99mTc-TRODAT-1 imaging. J Nucl Med. 2001;42(9):1303–8.

    CAS  PubMed  Google Scholar 

  14. Sasannezhad P, Juibary AG, Sadri K, Sadeghi R, Sabour M, Kakhki VRD, et al. (99m)Tc-TRODAT-1 SPECT imaging in early and late onset Parkinson's Disease. Asia Ocean J Nucl Med Biol. 2017;5(2):114–9.

    PubMed  PubMed Central  Google Scholar 

  15. Chou KL, Hurtig HI, Stern MB, Colcher A, Ravina B, Newberg A, et al. Diagnostic accuracy of [99mTc]TRODAT-1 SPECT imaging in early Parkinson's disease. Parkinsonism Relat Disord. 2004;10(6):375–9.

    CAS  PubMed  Google Scholar 

  16. Fang P, Wu CY, Liu ZG, Wan WX, Wang TS, Chen SD, et al. The preclinical pharmacologic study of dopamine transporter imaging agent [99mTc]TRODAT-1. Nucl Med Biol. 2000;27(1):69–75.

    CAS  PubMed  Google Scholar 

  17. Meegalla SK, Plossl K, Kung MP, Chumpradit S, Stevenson DA, Kushner SA, et al. Synthesis and characterization of technetium-99m-labeled tropanes as dopamine transporter-imaging agents. J Med Chem. 1997;40(1):9–17.

    CAS  PubMed  Google Scholar 

  18. Kung HF, Kung MP, Wey SP, Lin KJ, Yen TC. Clinical acceptance of a molecular imaging agent: a long march with [99mTc]TRODAT. Nucl Med Biol. 2007;34(7):787–9.

    CAS  PubMed  Google Scholar 

  19. Lin CC, Fan YM, Lin GY, Yang FC, Cheng CA, Lu KC, et al. 99mTc-TRODAT-1 SPECT as a potential neuroimaging biomarker in patients with restless legs syndrome. Clin Nucl Med. 2016;41(1):e14.

    PubMed  Google Scholar 

  20. Tzen KY, Lu CS, Yen TC, Wey SP, Ting G. Differential diagnosis of Parkinson’s disease and vascular parkinsonism by (99m)Tc-TRODAT-1. J Nucl Med. 2001;42(3):408–13.

    CAS  PubMed  Google Scholar 

  21. Chou MC, Lai PH, Li JY. Early white matter injuries associated with dopamine transporter dysfunction in patients with acute CO intoxication: a diffusion kurtosis imaging and Tc-99m TRODAT-1 SPECT study. Eur Radiol. 2019;29(3):1375–83.

    PubMed  Google Scholar 

  22. Wang J, Jiang YP, Liu XD, Chen ZP, Yang LQ, Liu CJ, et al. 99mTc-TRODAT-1 SPECT study in early Parkinson’s disease and essential tremor. Acta Neurol Scand. 2005;112(6):380–5.

    CAS  PubMed  Google Scholar 

  23. Ping W, Ping H, Dian-Chao Y, Hong L, Jie-Hua X. The clinical value of Tc-99m TRODAT-1 SPECT for evaluating disease severity in young patients with symptomatic and asymptomatic Wilson disease. Clin Nucl Med. 2007;32(11):844–9.

    Google Scholar 

  24. Bor-Seng-Shu E, Felicio AC, Braga-Neto P, Batista IR, Paiva WS, de Andrade DC, et al. Dopamine transporter imaging using 99mTc-TRODAT-1 SPECT in Parkinson’s disease. Med Sci Monit. 2014;20:1413–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Weng YH, Yen TC, Chen MC, Kao PF, Tzen KY, Chen RS, et al. Sensitivity and specificity of 99mTc-TRODAT-1 SPECT imaging in differentiating patients with idiopathic Parkinson's disease from healthy subjects. J Nucl Med. 2004;45(3):393–401.

    CAS  PubMed  Google Scholar 

  26. la Fougere C, Krause J, Krause KH, Josef Gildehaus F, Hacker M, Koch W, et al. Value of 99mTc-TRODAT-1 SPECT to predict clinical response to methylphenidate treatment in adults with attention deficit hyperactivity disorder. Nucl Med Commun. 2006;27(9):733–7.

    PubMed  Google Scholar 

  27. Kish SJ, Shannak K, Hornykiewicz O. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med 1988;318(14):876–880

    CAS  Google Scholar 

  28. Huang WS, Ma KH, Chou YH, Chen CY, Liu RS, Liu JC. 99mTc-TRODAT-1 SPECT in healthy and 6-OHDA lesioned parkinsonian monkeys: comparison with 18F-FDOPA PET. Nucl Med Commun. 2003;24(1):77–83.

    PubMed  Google Scholar 

  29. Shyu WC, Lin SZ, Chiang MF, Pang CY, Chen SY, Hsin YL, et al. Early-onset Parkinson’s disease in a Chinese population: 99mTc-TRODAT-1 SPECT, Parkin gene analysis and clinical study. Parkinsonism Relat Disord. 2005;11(3):173–80.

    PubMed  Google Scholar 

  30. Bao SY, Wu JC, Luo WF, Fang P, Liu ZL, Tang J. Imaging of dopamine transporters with technetium-99m TRODAT-1 and single photon emission computed tomography. J Neuroimaging. 2000;10(4):200–3.

    CAS  PubMed  Google Scholar 

  31. Mittal BR, Sood A, Shukla J, Vatsa R, Bhusari P, Shree R, et al. 99mTc-TRODAT-1 SPECT/CT imaging as a complementary biomarker in the diagnosis of parkinsonian syndromes. Nucl Med Commun. 2018;39(4):312–8.

    PubMed  Google Scholar 

  32. Patel A, Simon S, Elangoven IM, Amalchandran J, Amalchandran SJ, Jain ST. Dopamine Transporter maging with Tc-99m TRODAT-1 SPECT in Parkinson’s isease and its orrelation with linical isease everity. Asia Ocean J Nucl Med Biol 2019;7(1):22–28

  33. Shinto AS, Antony J, Kamaleshwaran K, Vijayan K, Selvan A, Korde A, et al. Correlative 99mTc-labeled tropane derivative single photon emission computer tomography and clinical assessment in the staging of Parkinson disease. World J Nucl Med. 2014;13(3):178–83.

    PubMed  PubMed Central  Google Scholar 

  34. Wooten GF. Are men at greater risk for Parkinson's disease than women? J Neurol Neurosurg Psychiatry. 2004;75(4):637–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Taylor KS, Cook JA, Counsell CE. Heterogeneity in male to female risk for Parkinson's disease. J Neurol Neurosurg Psychiatry. 2007;78(8):905–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Moisan F, Kab S, Mohamed F, Canonico M, Le Guern M, Quintin C, et al. Parkinson disease male-to-female ratios increase with age: French nationwide study and meta-analysis. J Neurol Neurosurg Psychiatry. 2016;87(9):952–7.

    PubMed  Google Scholar 

  37. Picillo M, Nicoletti A, Fetoni V, Garavaglia B, Barone P, Pellecchia MT. The relevance of gender in Parkinson's disease: a review. J Neurol. 2017;264(8):1583–607.

    PubMed  Google Scholar 

  38. Tanner CM, Goldman SM. Epidemiology of Parkinson's disease. Neurol Clin. 1996;14(2):317–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Inestrosa NC, Marzolo MP, Bonnefont AB. Cellular and molecular basis of estrogen's neuroprotection. Potential relevance for Alzheimer's disease. Mol Neurobiol 1998;17 (1–3):73–86

    CAS  PubMed  Google Scholar 

  40. Pankratz N, Nichols WC, Uniacke SK, Halter C, Rudolph A, Shults C, et al. Genome screen to identify susceptibility genes for Parkinson disease in a sample without parkin mutations. Am J Hum Genet. 2002;71(1):124–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Oostra RJ, Kemp S, Bolhuis PA, Bleeker-Wagemakers EM. No evidence for 'skewed' inactivation of the X-chromosome as cause of Leber's hereditary optic neuropathy in female carriers. Hum Genet. 1996;97(4):500–5.

    CAS  PubMed  Google Scholar 

  42. Mozley PD, Stubbs JB, Plossl K, Dresel SH, Barraclough ED, Alavi A, et al. Biodistribution and dosimetry of TRODAT-1: a technetium-99m tropane for imaging dopamine transporters. J Nucl Med. 1998;39(12):2069–76.

    CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingjing Lou or Xingdang Liu.

Ethics declarations

Conflicts of interest

No potential conflicts of interest were disclosed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Liu, C., Chen, Z. et al. A phase 2, open-label, multi-center study to evaluate the efficacy and safety of 99mTc-TRODAT-1 SPECT to detect Parkinson’s disease. Ann Nucl Med 34, 31–37 (2020). https://doi.org/10.1007/s12149-019-01412-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-019-01412-2

Keywords

Navigation