Skip to main content

Advertisement

Log in

Dual-time-point 18F-FDG PET/CT in the diagnosis of solitary pulmonary lesions in a region with endemic granulomatous diseases

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

Granulomatous diseases (GDs) can be metabolically active and indistinguishable from lung cancer on 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) imaging. Evaluation of solitary pulmonary lesions remains a diagnostic challenge in regions with endemic GD. This study sought to determine the efficacy of dual-time-point (DTP) 18F-FDG PET/computed tomography (CT) imaging in diagnosing solitary pulmonary lesions from such regions.

Methods

A total of 50 patients with solitary pulmonary nodules or masses with confirmed histopathological diagnoses underwent DTP 18F-FDG PET/CT imaging at 1 and 3 h after tracer injection. The maximum standardized uptake value (SUVmax) on early and delayed scans (SUV1h and SUV3h, respectively) and retention index (RI) were calculated for each pulmonary lesion. Receiver operating characteristic analysis was performed to evaluate the discriminating validity of the parameters.

Results

There were 37 malignant and 13 benign solitary pulmonary lesions. Eight of the 13 (62 %) benign lesions were GDs. The sensitivity/specificity/accuracy of SUV1h, SUV3h and RI were 84/69/80 %, 84/85/84 %, and 81/54/74 %, respectively. SUV3h had the best diagnostic performance, especially regarding specificity. The values of SUV1h and SUV3h were significantly different between malignant lesions and GD, while the RI values of malignant lesions and GD were both high (18.6 ± 19.5 and 18.7 ± 15.3 %, respectively; P = not significant).

Conclusion

SUV3h appeared to improve the diagnostic specificity of 18F-FDG PET/CT in evaluating solitary pulmonary lesions from regions with endemic GD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gupta NC, Frank AR, Dewan NA, Redepenning LS, Rothberg ML, Mailliard JA, et al. Solitary pulmonary nodules: detection of malignancy with PET with 2-[F-18]-fluoro-2-deoxy-d-glucose. Radiology. 1992;184:441–4.

    Article  CAS  PubMed  Google Scholar 

  2. Patz EF Jr, Lowe VJ, Hoffman JM, Paine SS, Burrowes P, Coleman RE, et al. Focal pulmonary abnormalities: evaluation with F-18 fluorodeoxyglucose PET scanning. Radiology. 1993;188:487–90.

    Article  PubMed  Google Scholar 

  3. Dewan NA, Gupta NC, Redepenning LS, Phalen JJ, Frick MP. Diagnostic efficacy of FDG-PET imaging in solitary pulmonary nodules. Potential role in evaluation and management. Chest. 1993;104:997–1002.

    Article  CAS  PubMed  Google Scholar 

  4. Flier JS, Mueckler MM, Usher P, Lodish HF. Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science. 1987;235:1492–5.

    Article  CAS  PubMed  Google Scholar 

  5. Monakhov NK, Neistadt EL, Shavlovskil MM, Shvartsman AL, Neifakh SA. Physicochemical properties and isoenzyme composition of hexokinase from normal and malignant human tissues. J Natl Cancer Inst. 1978;61:27–34.

    CAS  PubMed  Google Scholar 

  6. Gould MK, Maclean CC, Kuschner WG, Rydzak CE, Owens DK. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA. 2001;285:914–24.

    Article  CAS  PubMed  Google Scholar 

  7. Kapucu LO, Meltzer CC, Townsend DW, Keenan RJ, Luketich JD. Fluorine-18-fluorodeoxyglucose uptake in pneumonia. J Nucl Med. 1998;39:1267–9.

    CAS  PubMed  Google Scholar 

  8. Goo JM, Im JG, Do KH, Yeo JS, Seo JB, Kim HY, et al. Pulmonary tuberculoma evaluated by means of FDG PET: findings in 10 cases. Radiology. 2000;216:117–21.

    Article  CAS  PubMed  Google Scholar 

  9. Igai H, Gotoh M, Yokomise H. Computed tomography (CT) and positron emission tomography with [18F]fluoro-2-deoxy-d-glucose (FDG-PET) images of pulmonary cryptococcosis mimicking lung cancer. Eur J Cardiothorac Surg. 2006;30:837–9.

    Article  PubMed  Google Scholar 

  10. Duhaylongsod FG, Lowe VJ, Patz EF Jr, Vaughn AL, Coleman RE, Wolfe WG. Detection of primary and recurrent lung cancer by means of F-18 fluorodeoxyglucose positron emission tomography (FDG PET). J Thorac Cardiovasc Surg. 1995;110:130–9.

    Article  CAS  PubMed  Google Scholar 

  11. Deppen S, Putnam JB Jr, Andrade G, Speroff T, Nesbitt JC, Lambright ES, et al. Accuracy of FDG-PET to diagnose lung cancer in a region of endemic granulomatous disease. Ann Thorac Surg. 2011;92:428–32.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sebro R, Aparici CM, Hernandez-Pampaloni M. FDG PET/CT evaluation of pathologically proven pulmonary lesions in an area of high endemic granulomatous disease. Ann Nucl Med. 2013;27:400–5.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lodge MA, Lucas JD, Marsden PK, Cronin BF, O’Doherty MJ, Smith MA. A PET study of 18FDG uptake in soft tissue masses. Eur J Nucl Med. 1999;26:22–30.

    Article  CAS  PubMed  Google Scholar 

  14. Xiu Y, Bhutani C, Dhurairaj T, Yu JQ, Dadparvar S, Reddy S, et al. Dual-time point FDG PET imaging in the evaluation of pulmonary nodules with minimally increased metabolic activity. Clin Nucl Med. 2007;32:101–5.

    Article  PubMed  Google Scholar 

  15. Laffon E, de Clermont H, Begueret H, Vernejoux JM, Thumerel M, Marthan R, et al. Assessment of dual-time-point 18F-FDG-PET imaging for pulmonary lesions. Nucl Med Commun. 2009;30:455–61.

    Article  PubMed  Google Scholar 

  16. Matthies A, Hickeson M, Cuchiara A, Alavi A. Dual time point 18F-FDG PET for the evaluation of pulmonary nodules. J Nucl Med. 2002;43:871–5.

    PubMed  Google Scholar 

  17. Macdonald K, Searle J, Lyburn I. The role of dual time point FDG PET imaging in the evaluation of solitary pulmonary nodules with an initial standard uptake value less than 2.5. Clin Radiol. 2011;66:244–50.

    Article  CAS  PubMed  Google Scholar 

  18. Cloran FJ, Banks KP, Song WS, Kim Y, Bradley YC. Limitations of dual time point PET in the assessment of lung nodules with low FDG avidity. Lung Cancer. 2010;68:66–71.

    Article  PubMed  Google Scholar 

  19. Chen CJ, Lee BF, Yao WJ, Cheng L, Wu PS, Chu CL, et al. Dual-phase 18F-FDG PET in the diagnosis of pulmonary nodules with an initial standard uptake value less than 2.5. Am J Roentgenol. 2008;191:475–9.

    Article  Google Scholar 

  20. Sathekge MM, Maes A, Pottel H, Stoltz A, van de Wiele C. Dual time-point FDG PET-CT for differentiating benign from malignant solitary pulmonary nodules in a TB endemic area. S Afr Med J. 2010;100:598–601.

    Article  PubMed  Google Scholar 

  21. Lin YY, Chen JH, Ding HJ, Liang JA, Yeh JJ, Kao CH. Potential value of dual-time-point 18F-FDG PET compared with initial single-time-point imaging in differentiating malignant from benign pulmonary nodules: a systematic review and meta-analysis. Nucl Med Commun. 2012;33:1011–8.

    Article  PubMed  Google Scholar 

  22. Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, Yatabe Y, et al. International association for the study of lung cancer/American thoracic society/European respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol. 2011;6:244–85.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cook GJ, Wegner EA, Fogelman I. Pitfalls and artifacts in 18FDG PET and PET/CT oncologic imaging. Semin Nucl Med. 2004;34:122–33.

    Article  PubMed  Google Scholar 

  24. Schisterman EF, Perkins NJ, Liu A, Bondell H. Optimal cut-point and its corresponding Youden Index to discriminate individuals using pooled blood samples. Epidemiology. 2005;16:73–81.

    Article  PubMed  Google Scholar 

  25. Suga K, Kawakami Y, Hiyama A, Sugi K, Okabe K, Matsumoto T, et al. Dual-time point 18F-FDG PET/CT scan for differentiation between 18F-FDG-avid non-small cell lung cancer and benign lesions. Ann Nucl Med. 2009;23:427–35.

    Article  PubMed  Google Scholar 

  26. Al-Sugair A, Coleman RE. Applications of PET in lung cancer. Semin Nucl Med. 1998;28:303–19.

    Article  CAS  PubMed  Google Scholar 

  27. Fin L, Daouk J, Morvan J, Bailly P, El Esper I, Saidi L, et al. Initial clinical results for breath-hold CT-based processing of respiratory-gated PET acquisitions. Eur J Nucl Med Mol Imaging. 2008;35:1971–80.

    Article  PubMed  Google Scholar 

  28. Henschke CI, Yankelevitz DF, Mirtcheva R, McGuinness G, McCauley D, Miettinen OS, et al. CT screening for lung cancer: frequency and significance of part-solid and nonsolid nodules. Am J Roentgenol. 2002;178:1053–7.

    Article  Google Scholar 

  29. Naidich DP, Bankier AA, MacMahon H, Schaefer-Prokop CM, Pistolesi M, Goo JM, et al. Recommendations for the management of subsolid pulmonary nodules detected at CT: a statement from the Fleischner society. Radiology. 2013;266:304–17.

    Article  PubMed  Google Scholar 

  30. Tsujikawa T, Otsuka H, Morita N, Saegusa H, Kobayashi M, Okazawa H, et al. Does partial volume corrected maximum SUV based on count recovery coefficient in 3D-PET/CT correlate with clinical aggressiveness of non-Hodgkin’s lymphoma? Ann Nucl Med. 2008;22:23–30.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Feng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, YE., Huang, YJ., Ko, M. et al. Dual-time-point 18F-FDG PET/CT in the diagnosis of solitary pulmonary lesions in a region with endemic granulomatous diseases. Ann Nucl Med 30, 652–658 (2016). https://doi.org/10.1007/s12149-016-1109-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-016-1109-4

Keywords

Navigation