Skip to main content

Advertisement

Log in

Flood modeling through remote sensing datasets such as LPRM soil moisture and GPM-IMERG precipitation: A case study of ungauged basins across Morocco

  • Research
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

This article has been updated

Abstract

North Africa is characterized by several ungauged basins, especially in Morrocco, where satellite products could be an alternative of the lack ground-based measurements. In this study, the Land Parameter Retrieval Model (LPRM) soil moisture and the Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (GPM-IMERG) were used in flood modeling in Moroccan ungauged basins (Bourrous, Al Wiza, El Hallouf and Jamala). We started with comparing GPM-IMERG Early with ground measurements from five rain gauges. Next, the Soil Conservation Service – Curve Number (SCS-CN) was applied with ground precipitation measurements, LPRM and GPM-IMERG Early datasets to simulated flood events in a gauged basin, the Ghdat. Finally, this SCS-CN model was transposed with these satellite data sets validated to those ungauged basins in order to reproduce flood events. The results show that the GPM-IMERG Early is best with in situ measurements (correlation coefficient = 0.50; relative bias = 27.51%; probability of detection = 0.77; false alarm rate = 0.23), on a daily scale. The observed precipitation, LPRM and GPM-IMERG Early were performed well in validation to simulate floods in the Ghdat, where Nash–Sutcliffe criterion range from 0.43 and 0.98 using the SCS-CN model. For Bourrous, Al Wiza, El Hallouf and Jamala all flood events and hydrographs were reproduced by GPM-IMERG Early and LPRM products. Furthermore, LPRM products were validated against soil moisture measurements with a coefficient of determine R2 between 0.72 and 0.84. The results of this work provided interesting insights for flood modeling using GPM-IMERG and LPRM satellite products in ungauged basins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

Change history

  • 17 December 2022

    The first affiliation has been updated.

References

  • Al-Yaari A, Wigneron JP, Kerr YH, Rodríguez-Fernández NJ, O’neill PE, Jackson TJ, De Lannoy GJ, Al Bitar A, Mialon A, Richaume P, Walker JP, Mahmoodi A, Yueh SH (2017) Evaluating soil moisture retrievals from ESA’s SMOS and NASA’s SMAP brightness temperature datasets. Remote Sens Environ 193:257–273

    Article  Google Scholar 

  • Beaudoing H, Rodell M (2020) NASA/GSFC/HSL GLDAS Noah Land Surface Model L4 3 hourly 0.25 x 0.25 degree V2.1, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC). Accessed: [Data Access Date]. https://doi.org/10.5067/E7TYRXPJKWOQ

  • Bindlish R, Cosh MH, Jackson TJ, Koike T, Fujii H, Chan SK et al (2017) GCOM-W AMSR2 soil moisture product validation using core validation sites. IEEE J Sel Top Appl Earth Obs Remote Sens PP(99):1–17

    Google Scholar 

  • Bisselink B, van Meijgaard E, Dolman AJ, de Jeu RAM (2011) Initializing a regional climate model with satellite derived soil moisture. J Geohys Res 116

  • Bourke SA, Degens BP, Searle J, de Castro Tayer T, Rothery J (2021) Geological permeability controls streamflow generation in a remote, ungauged, semi-arid drainage system. J Hydrol: Reg Stud

  • Brocca L, Melone F, Moramarco T, Wagner W, Naeimi V, Bartalis Z, Hasenauer S (2010) Improving runoff prediction through the assimilation of the ASCAT soil moisture product. Hydrol Earth Syst Sci 14:1881–1893

    Article  Google Scholar 

  • Brocca L, Hasenauer S, Lacava T, Melone F, Moramarco T, Wagner W, Dorigo W, Matgen P, Martinez-Fernandez J, Ilorens P, Latron J, Martin C, Bittelli M (2011) Soil moisture estimation through ASCAT and AMSR-E sensors: an intercomparison and validation study across Europe. Remote Sens Environ 115:3390–3408

    Article  Google Scholar 

  • Candela L, Tamoh K, Olivares G, Gomez M (2012) Modelling impacts of climate change on water resources in ungauged and data-scarce basins. Application to the Siurana catchment (NE Spain). Sci Total Environ 440:253–260. https://doi.org/10.1016/j.scitotenv.2012.06.062

    Article  Google Scholar 

  • Cattani E, Ferguglia O, Merino A, Levizzani V (2021) Precipitation products’ inter-comparison over East and Southern Africa 1983–2017. Remote Sens 13:4419. https://doi.org/10.3390/rs13214419

    Article  Google Scholar 

  • Crow WT, Miralles DG, Cosh MH (2010) A quasi-global evaluation system for satellite based surface soil moisture retrievals. IEEE Trans Geosci Remote Sens 48:2516–2527

    Article  Google Scholar 

  • Cui C, Xu J, Zeng J, Chen K-S, Bai X, Lu H et al (2018) Soil moisture mapping from satellites: an intercomparison of SMAP, SMOS, FY3B, AMSR2, and ESA CCI over two dense network regions at different spatial scales. Remote Sens 10(1):33. https://doi.org/10.3390/rs10010033

    Article  Google Scholar 

  • de Jeu R, Owe M (2012) TMI/TRMM surface soil moisture (LPRM) L3 1 day 25 km x 25 km daytime V001, Edited by Goddard Earth Sciences Data and Information Services Center (GES DISC) (Bill Teng), Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC). Accessed: [Data Access Date]. https://doi.org/10.5067/8CHFMAWJQTCP

  • Dorigo WA, Scipal K, Parinussa RM, Liu YY, Wagner W, de Jeu RAM, Naeimi V (2010) Error characterization of global active and passive microwave soil moisture datasets. Hydrol Earth Syst Sc 14:2605–2616

    Article  Google Scholar 

  • Draper C, Walker J, Steinle P, de Jeu RAM, Holmes TRH (2009) An evaluation of AMSR-E derived soil moisture over Australia. Remote Sens Environ 113:703–710

    Article  Google Scholar 

  • El Khalki EM, Tramblay Y, El Mehdi Saidi M, Bouvier C, Hanich L, Benrhanem M, Alaouri M (2018) Comparison of modeling approaches for flood forecasting in the high atlas mountains of Morocco. Arab J Geosci 11(15):410. https://doi.org/10.1007/s12517-018-3752-7

    Article  Google Scholar 

  • El Khalki EM, Tramblay Y, Massari C, Brocca L, Simonneaux V, Gascoin S, Saidi MEM (2020) Challenges in flood modeling over data-scarce regions: how to exploit globally available soil moisture products to estimate antecedent soil wetness conditions in Morocco. Nat Hazards Earth Syst Sci 20:2591–2607. https://doi.org/10.5194/nhess-20-2591-2020

    Article  Google Scholar 

  • Geetha K, Mishra SK, Eldho TI, Rastogi AK, Pandey RP (2007) Modifications to SCS-CN method for long-term hydrologic simulation. J Irrig Drain Eng 133(5):475–486. https://doi.org/10.1061/(asce)0733-9437(2007)133:5(475)

    Article  Google Scholar 

  • Gravelius H (1914) Grundrifi der gesamten Gewcisserkunde. Band I: Flufikunde (Compendium of Hydrology, Vol. I. Rivers, in German). Goschen, Berlin

  • Gumindoga W, Rwasoka DT, Nhapi I, Dube T (2017) Ungauged runoff simulation in upper manyame catchment, Zimbabwe: application of the HEC-HMS model. Phys Chem Earth A/B/C 100:371–382. https://doi.org/10.1016/j.pce.2016.05.002

    Article  Google Scholar 

  • Hoseini Y, Azari A, Pilpayeh A (2016) Flood modeling using WMS model for determining peak flood discharge in southwest Iran case study: Simili basin in Khuzestan Province. Appl Water Sci 7(6):3355–3363. https://doi.org/10.1007/s13201-016-0482-4

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM Multisatellite Precipitation Analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8(1):38–55

    Article  Google Scholar 

  • Huffman GJ, Stocker EF, Bolvin DT, Nelkin EJ, Tan J (2019) GPM IMERG early precipitation L3 1 day 0.1 degree x 0.1 degree V06, Edited by Andrey Savtchenko, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC). Accessed: [Data Access Date]. https://doi.org/10.5067/GPM/IMERGDE/DAY/06

  • Huffman GJ, Bolvin DT, Braithwaite D et al (2020) Integrated multi-satellite retrievals for the Global Precipitation Measurement (GPM) Mission (IMERG). Satellite precipitation measurement, pp 343–353. https://doi.org/10.1007/978-3-030-24568-9_19. [Article in Book]

  • Jiang L, Bauer-Gottwein P (2019) How do GPM IMERG precipitation estimates perform as hydrological model forcing? Evaluation for 300 catchments across Mainland China. J Hydrol. https://doi.org/10.1016/j.jhydrol.2019.03.042

    Article  Google Scholar 

  • Joyce R, Janowiak JE, Arkin PA, Xie P (2004) CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J Hydrometeor 5(3):487–503

    Article  Google Scholar 

  • Jódar J, Carpintero E, Martos-Rosillo S, Ruiz-Constán A, Marín-Lechado C, Cabrera-Arrabal JA, Navarrete-Mazariegos E, González-Ramón A, Lambán LJ, Herrera C, González-Dugo MP (2018) Combination of lumped hydrological and remote-sensing models to evaluate water resources in a semi-arid high altitude ungauged watershed of Sierra Nevada (Southern Spain). Sci Total Environ 625:285–300

    Article  Google Scholar 

  • Kim DH (2018) High-spatial-resolution streamflow estimation at ungauged river sites or gauged sites with missing data using the National Hydrography Dataset (NHD) and U.S. Geological Survey (USGS) streamflow data. J Hydrol. https://doi.org/10.1016/j.jhydrol.2018.08.074

    Article  Google Scholar 

  • Lu X, Wei M, Tang G, Zhang Y (2018) Evaluation and correction of the TRMM 3B43V7 and GPM 3IMERGM satellite precipitation products by use of ground-based data over Xinjiang, China. Environ Earth Sci 77(5). https://doi.org/10.1007/s12665-018-7378-6

  • Massari C, Camici S, Ciabatta L, Brocca L (2018) Exploiting satellite-based surface soil moisture for flood forecasting in the Mediterranean Area: state update versus rainfall correction. Remote Sens 10(2):292. https://doi.org/10.3390/rs10020292

    Article  Google Scholar 

  • Meesters AGCA, DeJeu RAM, Owe M (2005) Analytical derivation of the vegetation optical depth from the microwave polarization difference index. IEEE Geosci Remote Sens Lett 2(2):121–123. https://doi.org/10.1109/lgrs.2005.843983

    Article  Google Scholar 

  • Michel C, Andréassian V, Perrin C (2005) Soil conservation service curve number method: How to mend a wrong soil moisture accounting procedure?. Water Resour Res 41(2). https://doi.org/10.1029/2004WR003191

  • Nadeem MU, Ghanim AAJ, Anjum MN, Shangguan D, Rasool G, Irfan M, Niazi UM, Hassan S (2022) Multiscale ground validation of satellite and reanalysis precipitation products over diverse climatic and topographic conditions. Remote Sens 14:4680. https://doi.org/10.3390/rs14184680

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I — a discussion of principles. J Hydrol 10(3):282–290. https://doi.org/10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2011) Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute

  • Njoku EG, Jackson TJ, Lakshmi V, Chan ST, Nghiem SV (2003) Soil moisture retrieval from AMSR-E. IEEE Trans Geosci Remote Sens 41:215–229. https://doi.org/10.1109/TGRS.2002.808243

    Article  Google Scholar 

  • Ouaba M, Saidi ME (2022) Contribution of morphological study to the understanding of watersheds in arid environment: a case study (Morocco). AIMS Environ Sci 10: 16–32. https://www.aimspress.com/article/doi/10.3934/environsci.2023002

  • Ouaba M, El Khalki EM, Saidi ME, Alam MJ (2022) Estimation of flood discharge in ungauged basin using GPM-IMERG satellite-based precipitation dataset in a Moroccan arid zone. Earth Syst Environ 1–16.https://doi.org/10.1007/s41748-022-00296-z

  • Owe M, Jeu RD, Walker JP (2001) A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Trans Geosci Remote Sens 39:1643–1654. https://doi.org/10.1109/36.942542

    Article  Google Scholar 

  • Owe M, de Jeu R, Holmes T (2008) Multisensor historical climatology of satellite-derived global land surface moisture. J Geophys Res 113(F1). https://doi.org/10.1029/2007jf000769

  • Parinussa RM, Holmes TRH, de Jeu RAM (2012) Soil moisture retrievals from the WindSat spaceborne polarimetric microwave radiometer. IEEE Trans Geosci Remote Sens 50(7):2683–2694. https://doi.org/10.1109/tgrs.2011.2174643

    Article  Google Scholar 

  • Parinussa RM, Holmes TRH, Wanders N, Dorigo WA, de Jeu RAM (2015) A Preliminary study toward consistent soil moisture from AMSR2. J Hydrometeorol 16(2):932–947. https://doi.org/10.1175/jhm-d-13-0200.1

    Article  Google Scholar 

  • Pradhan RK, Markonis Y, Godoy MRV, Villalba-Pradas A, Andreadis KM, Nikolopoulos EI ... Hanel M (2022) Review of GPM IMERG performance: a global perspective. Remote Sens Environ 268:112754. https://doi.org/10.1016/j.rse.2021.112754

  • Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng C, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The global land data assimilation system. Bull Am Meteor Soc 85(3):381–394. https://doi.org/10.1175/bams-85-3-381

    Article  Google Scholar 

  • Saddique N, Muzammil M, Jahangir I, Sarwar A, Ahmed E, Aslam RA, Bernhofer C (2022) Hydrological evaluation of 14 satellite-based, gauge-based and reanalysis precipitation products in a data-scarce mountainous catchment. Hydrol Sci J. https://doi.org/10.1080/02626667.2021.2022152

    Article  Google Scholar 

  • Saouabe T, Khalki EM, Saidi ME, Najmi A, Hadri A, Rachidi S, Jadoud M, Tramblay Y (2020) Evaluation of the GPM-IMERG precipitation product for flood modeling in a semi-arid mountainous basin in Morocco. Water. https://doi.org/10.3390/w12092516

    Article  Google Scholar 

  • Soo EZX, Wan Jaafar WZ, Lai SH, Othman F, Elshafie A, Islam T … Othman Hadi HS (2020) Precision of raw and bias-adjusted satellite precipitation estimations (TRMM, IMERG, CMORPH, and PERSIANN) over extreme flood events: case study in Langat river basin, Malaysia. J Water Clim Change. https://doi.org/10.2166/wcc.2020.180

  • Sorooshian S, Hsu KL, Gao X, Gupta HV, Imam B, Braithwaite D (2000) Evaluation of PERSIANN system satellite–based estimates of tropical rainfall. Bull Am Meteorol Soc 81(9):2035–2046

    Article  Google Scholar 

  • Stisen S, Tumbo M (2015) Interpolation of daily raingauge data for hydrological modelling in data sparse regions using pattern information from satellite data. Hydrol Sci J 1–16. https://doi.org/10.1080/02626667.2014.992789

  • Tang G, Clark MP, Papalexiou SM, Ma Z, Hong Y (2020) Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sens Environ 240:111697. https://doi.org/10.1016/j.rse.2020.111697

    Article  Google Scholar 

  • Tarnavsky E, Mulligan M, Husak G (2012) Spatial disaggregation and intensity correction of TRMM-based rainfall time series for hydrological applications in dryland catchments. Hydrol Sci J 57(2):248–264. https://doi.org/10.1080/02626667.2011.637498

    Article  Google Scholar 

  • Tramblay Y, Bouvier C, Martin C, Didon-Lescot J-F, Todorovik D, Domergue J-M (2010) Assessment of initial soil moisture conditions for event-based rainfall–runoff modelling. J Hydrol 387(3–4):176–187. https://doi.org/10.1016/j.jhydrol.2010.04.006

    Article  Google Scholar 

  • Tramblay Y, Bouaicha R, Brocca L, Dorigo W, Bouvier C, Camici S, Servat E (2012) Estimation of antecedent wetness conditions for flood modelling in northern Morocco. Hydrol Earth Syst Sci 16(11):4375–4386. https://doi.org/10.5194/hess-16-4375-2012

    Article  Google Scholar 

  • Tramblay Y, Thiemig V, Dezetter A, Hanich L (2016) Evaluation of satellite-based rainfall products for hydrological modelling in Morocco. Hydrol Sci J 61(14):2509–2519. https://doi.org/10.1080/02626667.2016.1154149

    Article  Google Scholar 

  • USACE (2009) HEC-HMS 3.4. Hydrologic modeling system, Hydrologic Engineering Center. U.S. Army Corps of Engineers, Davis

  • USDA, Soil Conservation Service (1972) National engineering hand- book, hydrology, Section 4. 548. Washington DC. USA

  • van der Schalie R, Kerr YH, Wigneron JP, Rodríguez-Fernández NJ, Al-Yaari A, de Jeu RAM (2016) Global SMOS soil moisture retrievals from the land parameter retrieval model. Int J Appl Earth Obs Geoinf 45:125–134. https://doi.org/10.1016/j.jag.2015.08.005

    Article  Google Scholar 

  • Walega A, Salata T (2019) Influence of land cover data sources on estimation of direct runoff according to SCS-CN and modified SME methods. Catena 172:232–242. https://doi.org/10.1016/j.catena.2018.08.032

    Article  Google Scholar 

  • Walega A, Amatya DM, Caldwell P, Marion D, Panda S (2020) Assessment of storm direct runoff and peak flow rates using improved SCS-CN models for selected forested watersheds in the Southeastern United States. J Hydrol: Reg Stud 27:100645. https://doi.org/10.1016/j.ejrh.2019.100645

    Article  Google Scholar 

  • Wanders N, Bierkens MFP, de Jong SM, de Roo A, Karssenberg D (2014a) The benefits of using remotely sensed soil moisture in parameter identification of large-scale hydrological models. Water Resour Res 50(8):6874–6891. https://doi.org/10.1002/2013wr014639

    Article  Google Scholar 

  • Wanders N, Karssenberg D, de Roo A, de Jong SM, Bierkens MFP (2014b) The suitability of remotely sensed soil moisture for improving operational flood forecasting. Hydrol Earth Syst Sci 18(6):2343–2357. https://doi.org/10.5194/hess-18-2343-2014

    Article  Google Scholar 

  • Yuan F, Zhang L, Soe K, Ren L, Zhao C, Zhu Y … Liu Y (2019) Applications of TRMM- and GPM-era multiple-satellite precipitation products for flood simulations at sub-daily scales in a sparsely gauged watershed in Myanmar. Remote Sens 11(2):140. https://doi.org/10.3390/rs11020140

Download references

Acknowledgements

The authors would like to express their gratitude for the Tensift Hydrological Basin Agency (ABHT) and NASA's mission Giovanni for providing the datasets required for this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. M.O wrote the paper and performed the analysis; M.E.S write the paper and contributed in the analysis; M.J.B.A checked the data and helped write the paper.

Corresponding author

Correspondence to Mounir Ouaba.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by: H. Babaie

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouaba, M., Saidi, M.E. & Alam, M.J.B. Flood modeling through remote sensing datasets such as LPRM soil moisture and GPM-IMERG precipitation: A case study of ungauged basins across Morocco. Earth Sci Inform 16, 653–674 (2023). https://doi.org/10.1007/s12145-022-00904-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-022-00904-6

Keywords

Navigation