Skip to main content

Advertisement

Log in

Geospatial modeling using hybrid machine learning approach for flood susceptibility

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

Advanced methods for flood susceptibility mapping are required to minimize hazards in the watershed. Here, Partial Least Square-Structural Equation Model (PLS-SEM) was introduced to analyze the impact of flood influencing factors. PLS-SEM integrated with four Machine Learning (ML) methods as Multi-Layer Perceptron Neural Network (MLPNN), K Nearest Neighbor (KNN), Support Vector Machine (SVM) and Radial Basis Function Neural network (RBFN). In addition, significant flood influencing factors from PLS-SEM analysis was taken as the input of ML models. Then SVM, MLPNN, KNN, and RBFN integrated with the PLS-SEM classifier to develop hybrid models for constructing FSM. The performance of models is assessed in terms of standard statistical methods. The performance of the achieved model is good having AUROC > 0.8 and PLS-SEM-SVM (AUROC = 0.978) perform superior than others. Thus, hybrid SVM model can be best utilized for flood susceptibility. This study provides the importance of mechanism for flood influencing factors and extends the application of proposed hybrid ML models to minimize flood risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexander M, Viavattene C, Faulkner H, Priest S (2011) A GIS-based flood risk assessment tool: supporting flood incident management at the local scale. Flood Hazard Research Centre, Middlesex University, London

    Google Scholar 

  • Apel H, Aronica GT, Kreibich H, Thieken AH (2009) Flood risk analyses—how detailed do we need to be? Nat Hazards 49(1):79–98

    Article  Google Scholar 

  • Bates PD (2004) Remote sensing and flood inundation modelling. Hydrol Process 18(13):2593–2597

    Article  Google Scholar 

  • Bentler PM, Huang W (2014) On components, latent variables, PLS and simple methods: reactions to Rigdon’s rethinking of PLS. Long Range Plan 47(3):138–145

    Article  Google Scholar 

  • Biswajeet P, Mardiana S (2009) Flood hazrad assessment for cloud prone rainy areas in a typical tropical environment. Disaster Advances 2(2):7–15

    Google Scholar 

  • Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp 144–152

  • Bradley AP (1997) The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn 30(7):1145–1159

    Article  Google Scholar 

  • Chau KW, Wu CL, Li YS (2005) Comparison of several flood forecasting models in Yangtze River. J Hydrol Eng 10(6):485–491

    Article  Google Scholar 

  • Chen Y-R, Yeh C-H, Yu B (2011) Integrated application of the analytic hierarchy process and the geographic information system for flood risk assessment and flood plain management in Taiwan. Nat Hazards 59(3):1261–1276

    Article  Google Scholar 

  • Choubin B, Moradi E, Golshan M, Adamowski J, Sajedi-Hosseini F, Mosavi A (2019) An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci Total Environ 651:2087–2096

    Article  Google Scholar 

  • Csáfordi P, Pődör A, Bug J, Gribovszki Z (2012) Soil erosion analysis in a small forested catchment supported by ArcGIS Model Builder. Acta Silv Lignaria Hung 8:39–55

    Article  Google Scholar 

  • Dankers R, Arnell NW, Clark DB, Falloon PD, Fekete BM, Gosling SN, Heinke J, Kim H, Masaki Y, Satoh Y (2014) First look at changes in flood hazard in the inter-sectoral impact model intercomparison project ensemble. Proc Natl Acad Sci 111(9):3257–3261

    Article  Google Scholar 

  • Dano UL, Balogun A-L, Matori A-N, Wan Yusouf K, Abubakar IR, Said Mohamed MA, Aina YA, Pradhan B (2019) Flood susceptibility mapping using GIS-based analytic network process: a case study of Perlis, Malaysia. Water 11(3):615

    Article  Google Scholar 

  • Dijkstra TK, Henseler J (2015) Consistent partial least squares path modeling. MIS Q 39(2):297–316

    Article  Google Scholar 

  • Elshorbagy A, Corzo G, Srinivasulu S, Solomatine DP (2010a) Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology-part 1: concepts and methodology. Hydrol Earth Syst Sci 14(10):1931–1941

    Article  Google Scholar 

  • Elshorbagy A, Corzo G, Srinivasulu S, Solomatine DP (2010b) Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology-part 2: application. Hydrol Earth Syst Sci 14(10):1943–1961

    Article  Google Scholar 

  • Fawcett T (2006) Introduction to receiver operator curves. Pattern Recognit Lett 27:861–874

    Article  Google Scholar 

  • Fenicia F, Kavetski D, Savenije HHG, Clark MP, Schoups G, Pfister L, Freer J (2014) Catchment properties, function, and conceptual model representation: is there a correspondence? Hydrol Process 28(4):2451–2467

    Article  Google Scholar 

  • Furl C, Ghebreyesus D, Sharif HO (2018) Assessment of the performance of satellite-based precipitation products for flood events across diverse spatial scales using GSSHA modeling system. Geosciences 8(6):191

    Article  Google Scholar 

  • Gerlach RW, Kowalski BR, Wold HOA (1979) Partial least-squares path modelling with latent variables. Anal Chim Acta 112(4):417–421

    Article  Google Scholar 

  • Ghose DK, Panda SS, Swain PC (2010) Prediction of water table depth in western region, Orissa using BPNN and RBFN neural networks. J Hydrol 394(3):296–304. https://doi.org/10.1016/j.jhydrol.2010.09.003

    Article  Google Scholar 

  • Gokceoglu C, Sonmez H, Nefeslioglu HA, Duman TY, Can T (2005) The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity. Eng Geol 81(1):65–83

    Article  Google Scholar 

  • Hair JF, Hult GTM, Ringle CM, Sarstedt M, Thiele KO (2017) Mirror, mirror on the wall: a comparative evaluation of composite-based structural equation modeling methods. J Acad Mark Sci 45(5):616–632

    Article  Google Scholar 

  • Haq M, Akhtar M, Muhammad S, Paras S, Rahmatullah J (2012) Techniques of remote sensing and GIS for flood monitoring and damage assessment: a case study of Sindh province, Pakistan. Egypt J Remote Sens Space Sci 15(2):135–141

    Google Scholar 

  • Heba FE, Darwish A, Hassanien AE, Abraham A (2010) Principle components analysis and support vector machine-based intrusion detection system. 2010 10th international conference on intelligent systems design and applications, pp 363–367

  • Henseler J, Dijkstra TK, Sarstedt M, Ringle CM, Diamantopoulos A, Straub DW, Ketchen DJ Jr, Hair JF, Hult GTM, Calantone RJ (2014) Common beliefs and reality about PLS: comments on Rönkkö and Evermann (2013). Organ Res Methods 17(2):182–209

    Article  Google Scholar 

  • Hong H, Panahi M, Shirzadi A, Ma T, Liu J, Zhu A-X, Chen W, Kougias I, Kazakis N (2018) Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. Sci Total Environ 621:1124–1141

    Article  Google Scholar 

  • Horng S-J, Su M-Y, Chen Y-H, Kao T-W, Chen R-J, Lai J-L, Perkasa CD (2011) A novel intrusion detection system based on hierarchical clustering and support vector machines. Expert Syst Appl 38(1):306–313

    Article  Google Scholar 

  • Horritt MS (2006) A methodology for the validation of uncertain flood inundation models. J Hydrol 326(1–4):153–165

    Article  Google Scholar 

  • Hosseini FS, Choubin B, Mosavi A, Nabipour N, Shamshirband S, Darabi H, Haghighi AT (2020) Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: Application of the simulated annealing feature selection method. Sci Total Environ 711:135161

    Article  Google Scholar 

  • Huong HTL, Pathirana A (2013) Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam. Hydrol Earth Syst Sci 17(1):379–394

    Article  Google Scholar 

  • Hussain M, Wajid SK, Elzaart A, Berbar M (2011) A comparison of SVM kernel functions for breast cancer detection. 2011 eighth international conference computer graphics, imaging and visualization, pp 145–150

  • Idrissi TEL, Idri A, Bakkoury Z (2019) Systematic map and review of predictive techniques in diabetes self-management. Int J Inf Manage 46:263–277

    Article  Google Scholar 

  • Jain AK, Mao J, Mohiuddin KM (1996) Artificial neural networks: a tutorial. Computer 29(3):31–44

    Article  Google Scholar 

  • Kazakis N, Kougias I, Patsialis T (2015) Assessment of flood hazard areas at a regional scale using an index-based approach and analytical hierarchy process: application in Rhodope-Evros region, Greece. Sci Total Environ 538:555–563

    Article  Google Scholar 

  • Khosravi K, Pham BT, Chapi K, Shirzadi A, Shahabi H, Revhaug I, Prakash I, Bui DT (2018) A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Sci Total Environ 627:744–755

    Article  Google Scholar 

  • Khu ST, Liong S, Babovic V, Madsen H, Muttil N (2001) Genetic programming and its application in real-time runoff forecasting 1. J Am Water Resour Assoc 37(2):439–451

    Article  Google Scholar 

  • Kia MB, Pirasteh S, Pradhan B, Mahmud AR, Sulaiman WNA, Moradi A (2012) An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environ Earth Sci 67(1):251–264

    Article  Google Scholar 

  • Lawal DU, Matori AN, Hashim AM, Wan Yusof K, Chandio IA (2012) Detecting flood susceptible areas using GIS-based analytic hierarchy process

  • Lawal DU, Matori A-N, Yusuf KW, Hashim AM, Balogun A-L (2014) Analysis of the flood extent extraction model and the natural flood influencing factors: a GIS-based and remote sensing analysis. IOP Conf Ser: Earth Environ Sci 18(1):012059

    Article  Google Scholar 

  • Lecca G, Petitdidier M, Hluchy L, Ivanovic M, Kussul N, Ray N, Thieron V (2011) Grid computing technology for hydrological applications. J Hydrol 403(1–2):186–199

    Article  Google Scholar 

  • Lee S, Kim J-C, Jung H-S, Lee MJ, Lee S (2017) Spatial prediction of flood susceptibility using random-forest and boosted-tree models in Seoul metropolitan city, Korea. Geomat Nat Haz Risk 8(2):1185–1203

    Article  Google Scholar 

  • Leong L-Y, Hew T-S, Ooi K-B, Wei J (2020) Predicting mobile wallet resistance: a two-staged structural equation modeling-artificial neural network approach. Int J Inf Manage 51:102047

    Article  Google Scholar 

  • Liang D, Xu Z, Liu D (2017) Three-way decisions with intuitionistic fuzzy decision-theoretic rough sets based on point operators. Inf Sci 375:183–201

    Article  Google Scholar 

  • Lohmöller J-B (1989) Predictive vs. structural modeling: Pls vs. ml. In: Latent variable path modeling with partial least squares. Springer, pp 199–226

  • Luu C, von Meding J, Kanjanabootra S (2018) Assessing flood hazard using flood marks and analytic hierarchy process approach: a case study for the 2013 flood event in Quang Nam, Vietnam. Nat Hazards 90(3):1031–1050

    Article  Google Scholar 

  • Luu C, Pham BT, van Phong T, Costache R, Nguyen HD, Amiri M, Bui QD, Nguyen LT, van Le H, Prakash I (2021) GIS-based ensemble computational models for flood susceptibility prediction in the Quang Binh Province, Vietnam. J Hydrol 599:126500

    Article  Google Scholar 

  • Mahmoud SH, Gan TY (2018) Urbanization and climate change implications in flood risk management: developing an efficient decision support system for flood susceptibility mapping. Sci Total Environ 636:152–167

    Article  Google Scholar 

  • Manandhar B (2010) Flood plain analysis and risk assessment of Lothar Khola. Master of Science Thesis in Watershed Management. Tribhuvan University Institute of Forestry Pokhara, Nepal

  • Meyer V, Scheuer S, Haase D (2009) A multicriteria approach for flood risk mapping exemplified at the Mulde river, Germany. Nat Hazards 48(1):17–39

    Article  Google Scholar 

  • Miller JD, Hutchins M (2017) The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. J Hydrol: Reg Stud 12:345–362

    Google Scholar 

  • Mojaddadi H, Pradhan B, Nampak H, Ahmad N, bin Ghazali AH (2017) Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS. Geomat Nat Haz Risk 8(2):1080–1102

    Article  Google Scholar 

  • Moore ID, Wilson JP (1992) Length-slope factors for the revised universal soil loss equation: simplified method of estimation. J Soil Water Conserv 47(5):423–428

    Google Scholar 

  • Oh H-J, Pradhan B (2011) Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Comput Geosci 37(9):1264–1276

    Article  Google Scholar 

  • Pamučar D, Stević Ž, Sremac S (2018) A new model for determining weight coefficients of criteria in mcdm models: full consistency method (fucom). Symmetry 10(9):393

    Article  Google Scholar 

  • Popovic M, Kuzmanović M, Savić G (2018) A comparative empirical study of analytic hierarchy process and conjoint analysis: literature review. Decis Mak Appl Manag Eng 1(2):153–163

    Article  Google Scholar 

  • Pradhan B, Hagemann U, Tehrany MS, Prechtel N (2014) An easy to use ArcMap based texture analysis program for extraction of flooded areas from TerraSAR-X satellite image. Comput Geosci 63:34–43

    Article  Google Scholar 

  • Radmehr A, Araghinejad S (2014) Developing strategies for urban flood management of Tehran city using SMCDM and ANN. J Comput Civ Eng 28(6):05014006

    Article  Google Scholar 

  • Rahmati O, Zeinivand H, Besharat M (2016) Flood hazard zoning in Yasooj region, Iran, using GIS and multi-criteria decision analysis. Geomat Nat Haz Risk 7(3):1000–1017

    Article  Google Scholar 

  • Rizeei HM, Pradhan B, Saharkhiz MA, Lee S (2019) Groundwater aquifer potential modeling using an ensemble multi-adoptive boosting logistic regression technique. J Hydrol 579:124172

    Article  Google Scholar 

  • Rosenblatt F (1961) Principles of neurodynamics. perceptrons and the theory of brain mechanisms. Cornell Aeronautical Lab Inc Buffalo NY

  • Saini SS, Kaushik SP (2012) Risk and vulnerability assessment of flood hazard in part of Ghaggar Basin: a case study of Guhla block, Kaithal, Haryana, India. Int J Geomat Geosci 3(1):42–54

    Google Scholar 

  • Samanta RK, Bhunia GS, Shit PK, Pourghasemi HR (2018) Flood susceptibility mapping using geospatial frequency ratio technique: a case study of Subarnarekha River Basin, India. Model Earth Syst Environ 4(1):395–408

    Article  Google Scholar 

  • Santos PP, Reis E, Pereira S, Santos M (2019) A flood susceptibility model at the national scale based on multicriteria analysis. Sci Total Environ 667:325–337

    Article  Google Scholar 

  • Siahkamari S, Haghizadeh A, Zeinivand H, Tahmasebipour N, Rahmati O (2018) Spatial prediction of flood-susceptible areas using frequency ratio and maximum entropy models. Geocarto Int 33(9):927–941

    Article  Google Scholar 

  • Siddayao GP, Valdez SE, Fernandez PL (2014) Analytic hierarchy process (AHP) in spatial modeling for floodplain risk assessment. Int J Mach Learn Comput 4(5):450

    Article  Google Scholar 

  • Sinha R, Bapalu GV, Singh LK, Rath B (2008) Flood risk analysis in the Kosi river basin, north Bihar using multi-parametric approach of analytical hierarchy process (AHP). J Indian Soc Remote Sens 36(4):335–349

    Article  Google Scholar 

  • Svozil D, Kvasnicka V, Pospichal J (1997) Introduction to multi-layer feed-forward neural networks. Chemom Intell Lab Syst 39(1):43–62

    Article  Google Scholar 

  • Taneja A, Arora A (2019) Modeling user preferences using neural networks and tensor factorization model. Int J Inf Manage 45:132–148

    Article  Google Scholar 

  • Tang Z, Zhang H, Yi S, Xiao Y (2018) Assessment of flood susceptible areas using spatially explicit, probabilistic multi-criteria decision analysis. J Hydrol 558:144–158

    Article  Google Scholar 

  • Tehrany MS, Pradhan B, Jebur MN (2013) Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. J Hydrol 504:69–79

    Article  Google Scholar 

  • Tehrany MS, Pradhan B, Jebur MN (2014) Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J Hydrol 512:332–343

    Article  Google Scholar 

  • Teo A-C, Tan GW-H, Ooi K-B, Hew T-S, Yew K-T (2015) The effects of convenience and speed in m-payment. Ind Manag Data Syst 115:311–331

    Article  Google Scholar 

  • Termeh SVR, Kornejady A, Pourghasemi HR, Keesstra S (2018) Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Sci Total Environ 615:438–451

    Article  Google Scholar 

  • Toth E, Brath A, Montanari A (2000) Comparison of short-term rainfall prediction models for real-time flood forecasting. J Hydrol 239(1–4):132–147

    Article  Google Scholar 

  • Truong XL, Mitamura M, Kono Y, Raghavan V, Yonezawa G, Truong XQ, Do TH, Tien Bui D, Lee S (2018) Enhancing prediction performance of landslide susceptibility model using hybrid machine learning approach of bagging ensemble and logistic model tree. Appl Sci 8(7):1046

    Article  Google Scholar 

  • Vapnik VN (1995) The nature of statistical learning theory. Springer, Berlin

    Book  Google Scholar 

  • Varoonchotikul P (2003) Flood forecasting using artificial neural networks. CRC Press, Boca Raton

    Google Scholar 

  • Vojinovic Z, Abbott MB (2012) Flood risk and social justice. IWA Publishing

  • Wanders N, Bierkens MFP, de Jong SM, de Roo A, Karssenberg D (2014) The benefits of using remotely sensed soil moisture in parameter identification of large-scale hydrological models. Water Resour Res 50(8):6874–6891

    Article  Google Scholar 

  • Wang Y, Fang Z, Hong H, Peng L (2020) Flood susceptibility mapping using convolutional neural network frameworks. J Hydrol 582:124482

    Article  Google Scholar 

  • Xia X, Liang Q, Ming X, Hou J (2017) An efficient and stable hydrodynamic model with novel source term discretization schemes for overland flow and flood simulations. Water Resour Res 53(5):3730–3759

    Article  Google Scholar 

  • Yahaya S, Ahmad N, Abdalla RF (2010) Multicriteria analysis for flood vulnerable areas in Hadejia-Jama’are River basin, Nigeria. Eur J Sci Res 42(1):71–83

    Google Scholar 

  • Yousefi S, Mirzaee S, Keesstra S, Surian N, Pourghasemi HR, Zakizadeh HR, Tabibian S (2018) Effects of an extreme flood on river morphology (case study: Karoon River, Iran). Geomorphology 304:30–39

    Article  Google Scholar 

  • Zazo S, Rodríguez-Gonzálvez P, Molina J-L, González-Aguilera D, Agudelo-Ruiz CA, Hernández-López D (2018) Flood hazard assessment supported by reduced cost aerial precision photogrammetry. Remote Sens 10(10):1566

    Article  Google Scholar 

  • Zenggang X, Zhiwen T, Xiaowen C, Xue-min Z, Kaibin Z, Conghuan Y (2021) Research on image retrieval algorithm based on combination of color and shape features. J Signal Process Syst 93(2):139–146

    Article  Google Scholar 

  • Zhang Q, Xu C-Y, Zhang Z, Chen YD, Liu C, Lin H (2008) Spatial and temporal variability of precipitation maxima during 1960–2005 in the Yangtze River basin and possible association with large-scale circulation. J Hydrol 353(3–4):215–227

    Article  Google Scholar 

  • Zhao G, Pang B, Xu Z, Yue J, Tu T (2018) Mapping flood susceptibility in mountainous areas on a national scale in China. Sci Total Environ 615:1133–1142

    Article  Google Scholar 

  • Zhu K (2007) Operator theory in function spaces (Issue 138). American Mathematical Soc

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dillip Kumar Ghose.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by: H. Babaie

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, B.P., Ghose, D.K. & Satapathy, D.P. Geospatial modeling using hybrid machine learning approach for flood susceptibility. Earth Sci Inform 15, 2619–2636 (2022). https://doi.org/10.1007/s12145-022-00872-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-022-00872-x

Keywords

Navigation