Skip to main content

Advertisement

Log in

Solving geoinformatics parametric polynomial systems using the improved Dixon resultant

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

Improvements in computational and observational technologies in geoinformatics, e.g., the use of laser scanners that produce huge point cloud data sets, or the proliferation of global navigation satellite systems (GNSS) and unmanned aircraft vehicles (UAVs), have brought with them the challenges of handling and processing this “big data”. These call for improvement or development of better processing algorithms. One way to do that is integration of symbolically presolved sub-algorithms to speed up computations. Using examples of interest from real geoinformatic problems, we will discuss the Dixon-EDF resultant as an improved resultant method for the symbolic solution of parametric polynomial systems. We will briefly describe the method itself, then discuss geoinformatics problems arising in minimum distance mapping (MDM), parameter transformations, and pose estimation essential for resection. Dixon-EDF is then compared to older notions of “Dixon resultant”, and to several respected implementations of Gröbner bases algorithms on several systems. The improved algorithm, Dixon-EDF, is found to be greatly superior, usually by orders of magnitude, in both CPU usage and RAM usage. It can solve geoinformatics problems on which the other methods fail, making symbolic solution of parametric systems feasible for many problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Awange J (2018) GNSS environmental sensing. Springer International Publishers, New York

  • Awange JL, Palancz B, Lewis R, Lovas T, Heck B, Fukuda Y (2016) An algebraic solution of maximum likelihood function in case of Gaussian mixture distribution. Aust J Earth Sci 63(2):193–203. https://doi.org/10.1080/08120099.2016.1143876

    Article  Google Scholar 

  • Awange J (2012) Environmental monitoring using GNSS. Springer, New York

    Book  Google Scholar 

  • Awange J, Fukuda Y, Grafarend E (2004) Exact solution of the nonlinear 7 parameter datum transformation by Groebner basis Bollettino di Geodesia e Scienze Affini (1)

  • Awange J, Grafarend E (2002) Algebraic solution of GPS pseudo-ranging equations. GPS Solutions 5 (4):20–32

    Article  Google Scholar 

  • Awange J, Grafarend E (2002) Nonlinear adjustment of GPS observations of type pseudo-ranges. GPS Solutions 5(4):80–93

    Article  Google Scholar 

  • Awange J, Paláncz B (2016) Geospatial algebraic computations, theory and applications. Springer, New York

    Book  Google Scholar 

  • Awange J, Palancz B, Lewis BRH, Vlgyesi L (2018) Mathematical geosciences -hybrid symbolic-numeric methods-, Springer International Publishers, New York

  • Bozoki S, Lewis RH (2005) Solving the least squares method problem in the AHP for 33 and 44 matrices. CEJOR 13(3):255–270

    Google Scholar 

  • Buse L, Elkadi M, Mourrain B (2000) Generalized resultants over unirational algebraic varieties. J Symbolic Comp 29:515– 526

    Article  Google Scholar 

  • Bates D, Hauenstein J, Sommese A, Wampler C (2013) Software for numerical algebraic geometry. https://bertini.nd.edu

  • Buch N, Velastin SA, Orwell J (2011) A review of computer vision techniques for the analysis of urban traffic. IEEE Trans Intell Transp Syst 12(3):920–939. https://doi.org/10.1109/TITS.2011.2119372

    Article  Google Scholar 

  • Cox D, Little J, O’Shea D (1998) Using algebraic geometry. Graduate texts in mathematics, vol 185. Springer-Verlag, New York

    Book  Google Scholar 

  • Dixon AL (1908) The eliminant of three quantics in two independent variables. Proc London Math Soc 6:468–478

    Article  Google Scholar 

  • Faugere J-C (1999) A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure and Applied Algebra (Elsevier Science) 139:61–88

    Article  Google Scholar 

  • Faugere J-C (2014) Personal communication, July 8

  • Freeman P K, Freeland R S (2015) Agricultural UAVs in the U.S.: potential, policy, and hype. Remote Sensing Applications: Society and Environment 2:35–43. https://doi.org/10.1016/j.rsase.2015.10.002

    Article  Google Scholar 

  • Gentleman W, Johnson S (1974) The evaluation of determinants by expansion by minors and the general problem of substitution. Math Comput 28(126):543–548

    Article  Google Scholar 

  • Grenet B, Koiran P, Portier N (2010) The multivariate resultant is NP-hard in any characteristic. In: MFCS 2010. Lecture Notes in Computer Science, vol 6281. Springer, Berlin

  • Kapur D, Saxena T, Yang L (1994) Algebraic and geometric reasoning using Dixon resultants. In: Proceedings of the international symposium on symbolic and algebraic computation. A.C.M. Press

  • Kukelova Z, Bujnak M, Pajdla T (2008) Polynomial Eigenvalue Solutions to the 5-pt and 6-pt Relative Pose Problems. - BMVC - cmp.felk.cvut.cz// kukelova/webthesis/publications/Kukelova-etal-BMVC-2008.pdf [Accessed 12/1/2018]

  • Lepetit V, Moreno-Noguer F, Fua P (2009) EPnP: An accurate O(n) solution to the PnP problem. Int J Comput Vis 81:155. https://doi.org/10.1007/s11263-008-0152-6

    Article  Google Scholar 

  • Lewis RH (2005) Computer algebra system Fermat. http://home.bway.net/lewis/

  • Lewis RH (2005) Fermat code for Dixon-EDF. http://home.bway.net/lewis/dixon

  • Lewis RH (2008) Heuristics to accelerate the Dixon resultant. Math Comput Simul 77(4):400–407

    Article  Google Scholar 

  • Lewis R, Bridgett S (2003) Conic tangency equations arising from Apollonius problems in biochemistry. Math Comput Simul 61(2):101–114

    Article  Google Scholar 

  • Lewis RH, Coutsias EA (2014) Flexibility of Bricard’s linkages and other structures via resultants and computer algebra. Mathematics and Computers in Simulation. arXiv:1408.6247

  • Lewis RH, Stiller P (1999) Solving the recognition problem for six lines using the Dixon resultant. Math Comput Simul 49:203–219

    Article  Google Scholar 

  • Nister D (2004) An efficient solution to the five-point relative pose problem. IEEE Trans Pattern Anal Mach Intell 26(6):756–770. https://doi.org/10.1109/TPAMI.2004.17

    Article  Google Scholar 

  • Paláncz B, Lewis RH, Zaletnyik P, Awange J (2008) Computational study of the 3D affine transformation part I. 3-point problem. March. online at http://library.wolfram.com/infocenter/MathSource/7090/

  • Paláncz B, Awange J, Zaletnyik P, Lewis RH (2009) Linear homotopy solution of nonlinear systems of equations in geodesy, Journal of Geodesy. http://www.springerlink.com/content/78qh80606j224341/

  • Paláncz B, Zaletnyik P, Awange J, Grafarend E (2008) Dixon resultant solution of systems of geodetic polynomial equations. J Geod 82:505–511

    Article  Google Scholar 

  • Paláncz B, Zaletnyik P (2011) A symbolic solution of a 3D affine transformation. Math J 13:10–15

    Google Scholar 

  • Periaswamy S, Farid H (2006) Medical image registration with partial data. Med Image Anal 10(3):452–464. https://doi.org/10.1016/j.media.2005.03.006

    Article  Google Scholar 

  • Steel A (2015) personal communications. September 2 – 7

  • Sommese AJ, Wampler CW (2005) The numerical solution of systems of polynomials: Arising in engineering and science. World Scientific London

  • Sturmfels B (2003) Solving systems of polynomial equations. CBMS Regional Conference Series in Mathematics, vol 97. American Mathematical Society, Providence

    Google Scholar 

  • Ventura J, Arth C, Reitmayr G, Schmalstieg D (2014) A minimal solution to the generalized pose-and-scale problem. In: 2014 IEEE conference on computer vision and pattern recognition (CVPR), pp 422–429. ISSN 1063–6919

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Awange.

Additional information

Communicated by: H. A. Babaie

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The Maple-FGb commands for the pose example:


Maple 2015 (X86 64 LINUX)


Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2015 > with(FGb): p := 0; v1 := [ x2, x3, x4 ]; v2 := [ x1, b1,b2,b3,b4,c12,c23,c34,c41 ]; sys := [x1^2 + x2^2 - c12*x1*x2 - b1, x2^2 + x3^2 - c23*x2*x3 - b2, x3^2 + x4^2 - c34*x3*x4 - b3, x4^2 + x1^2 - c41*x4*x1 - b4]; > ll1:=fgb_gbasis_elim(sys, p,v1,v2, {"step"=8,"verb"=3,"index"=40000000});

Magma commands for the pose example:


Magma V2.21-8 Thu Dec 10 2015 13:26:28 on ace-math01 [Seed = 2343837211] Type ? for help. Type <Ctrl>-D to quit. Q:=RationalField(); F<b1,b2,b3,b4,c12,c23,c34,c41> := FunctionField(Q,8); R<x1,x2,x3,x4> := PolynomialRing(F,4, "elim", [2,3,4]); I := Ideal ([x1^2 + x2^2 - c12*x1*x2 - b1, x2^2 + x3^2 - c23*x2*x3 - b2, x3^2 + x4^2 - c34*x3*x4 - b3, x4^2 + x1^2 - c41*x4*x1 - b4]); time G := GroebnerBasis(I);

Mathematica command for the general 3D conic problem, solving for x (the ei are the four equations from above):

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewis, R.H., Paláncz, B. & Awange, J. Solving geoinformatics parametric polynomial systems using the improved Dixon resultant. Earth Sci Inform 12, 229–239 (2019). https://doi.org/10.1007/s12145-018-0366-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-018-0366-2

Keywords

Navigation