Skip to main content
Log in

FAIMS-MS-IR spectroscopy workflow: a multidimensional platform for the analysis of molecular isoforms

  • Original Research
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

An original workflow allowing inline FAIMS separation, electrospray ionization, mass analysis and ion spectroscopy (IRMPD: InfraRed Multiple Photon Dissociation) is presented for multidimensional molecular analysis. This new instrument consists of an ultraFAIMS (Owlstone) device interfaced to a linear ion trap (LTQ XL Thermo Scientific) which was modified for IRMPD spectroscopy. Two modes of operation are demonstrated on an isomeric mixture of paracetamol and 2-phenylglycine. In the first mode a FAIMS (high-Field Asymmetric waveform Ion Mobility Spectrometry) separation of the isomers is performed with a static compensation field for mass- and isomer- selective ion spectroscopy. In the second mode, the compensation field is scanned while the ions are irradiated at a fixed wavenumber. The advantages of this workflow as compared to traditional FAIMS-MS and IRMPD spectroscopy are described. The potential of the two modes for molecular spectroscopy and analytical applications, in particular the new “omics” are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Smith RW, Toutoungi DE, Reynolds JC et al (2013) Enhanced performance in the determination of ibuprofen 1-β-O-acyl glucuronide in urine by combining high field asymmetric waveform ion mobility spectrometry with liquid chromatography-time-of-flight mass spectrometry. J Chromatogr A 1278:76–81. https://doi.org/10.1016/j.chroma.2012.12.065

    Article  CAS  Google Scholar 

  2. Arthur KL, Turner MA, Reynolds JC, Creaser CS (2017) Increasing peak capacity in nontargeted Omics applications by combining full scan field asymmetric waveform ion mobility spectrometry with liquid chromatography–mass spectrometry. Anal Chem 89:3452–3459. https://doi.org/10.1021/acs.analchem.6b04315

    Article  CAS  Google Scholar 

  3. Guevremont R (2004) High-field asymmetric waveform ion mobility spectrometry: a new tool for mass spectrometry. J Chromatogr A 1058:3–19. https://doi.org/10.1016/j.chroma.2004.08.119

    Article  CAS  Google Scholar 

  4. Kolakowski BM, Mester Z (2007) Review of applications of high-field asymmetric waveform ion mobility spectrometry (FAIMS) and differential mobility spectrometry (DMS). Analyst 132:842. https://doi.org/10.1039/b706039d

    Article  CAS  Google Scholar 

  5. Kanu AB, Dwivedi P, Tam M et al (2008) Ion mobility-mass spectrometry. J Mass Spectrom 43:1–22. https://doi.org/10.1002/jms.1383

    Article  CAS  Google Scholar 

  6. Winkler W, Huber W, Vlasak R, Allmaier G (2011) Positive and negative electrospray ionisation travelling wave ion mobility mass spectrometry and low-energy collision-induced dissociation of sialic acid derivatives: ESI travelling wave IM-MS and low-energy CID of sialic acid derivatives. Rapid Commun Mass Spectrom 25:3235–3244. https://doi.org/10.1002/rcm.5217

    Article  CAS  Google Scholar 

  7. Smith RW, Cox LB, Yudin A et al (2015) Rapid determination of N-methylpyrrolidine in cefepime by combining direct infusion electrospray ionisation-time-of-flight mass spectrometry with field asymmetric waveform ion mobility spectrometry. Anal Methods 7:34–39. https://doi.org/10.1039/C4AY02026J

    Article  CAS  Google Scholar 

  8. Da Costa C, Turner M, Reynolds JC et al (2016) Direct analysis of oil additives by high-field asymmetric waveform ion mobility spectrometry-mass spectrometry combined with electrospray ionization and desorption electrospray ionization. Anal Chem 88:2453–2458. https://doi.org/10.1021/acs.analchem.5b04595

    Article  Google Scholar 

  9. Feider CL, Elizondo N, Eberlin LS (2016) Ambient ionization and FAIMS mass spectrometry for enhanced imaging of multiply charged molecular ions in biological tissues. Anal Chem 88:11533–11541. https://doi.org/10.1021/acs.analchem.6b02798

    Article  CAS  Google Scholar 

  10. Arthur KL, Turner MA, Brailsford AD et al (2017) Rapid analysis of anabolic steroid metabolites in urine by combining field asymmetric waveform ion mobility spectrometry with liquid chromatography and mass spectrometry. Anal Chem 89:7431–7437. https://doi.org/10.1021/acs.analchem.7b00940

    Article  CAS  Google Scholar 

  11. Polfer NC, Oomens J (2009) Vibrational spectroscopy of bare and solvated ionic complexes of biological relevance. Mass Spectrom Rev 28:468–494. https://doi.org/10.1002/mas.20215

    Article  CAS  Google Scholar 

  12. Patrick AL, Cismesia AP, Tesler LF, Polfer NC (2017) Effects of ESI conditions on kinetic trapping of the solution-phase protonation isomer of p -aminobenzoic acid in the gas phase. Int J Mass Spectrom 418:148–155. https://doi.org/10.1016/j.ijms.2016.09.022

    Article  CAS  Google Scholar 

  13. Schindler B, Barnes L, Gray CJ et al (2017) IRMPD spectroscopy sheds new (infrared) light on the sulfate pattern of carbohydrates. J Phys Chem A 121:2114–2120. https://doi.org/10.1021/acs.jpca.6b11642

    Article  CAS  Google Scholar 

  14. Nei Y -w, Hallowita N, Steill JD et al (2013) Infrared multiple photon dissociation action spectroscopy of deprotonated DNA mononucleotides: gas-phase conformations and energetics. J Phys Chem A 117:1319–1335. https://doi.org/10.1021/jp3077936

    Article  CAS  Google Scholar 

  15. Rijs AM, Oomens J (2014) IR spectroscopic techniques to study isolated biomolecules. In: Rijs AM, Oomens J (eds) Gas-phase IR spectroscopy and structure of biological molecules. Springer International Publishing, Cham, pp 1–42

    Google Scholar 

  16. Martens J, Grzetic J, Berden G, Oomens J (2016) Structural identification of electron transfer dissociation products in mass spectrometry using infrared ion spectroscopy. Nat Commun 7:11754. https://doi.org/10.1038/ncomms11754

    Article  CAS  Google Scholar 

  17. Martens J, Koppen V, Berden G et al (2017) Combined liquid chromatography-infrared ion spectroscopy for identification of Regioisomeric drug metabolites. Anal Chem 89:4359–4362. https://doi.org/10.1021/acs.analchem.7b00577

    Article  CAS  Google Scholar 

  18. Wattjes J, Schindler B, Trombotto S et al (2017) Discrimination of patterns of N-acetylation in chitooligosaccharides by gas phase IR spectroscopy integrated to mass spectrometry. Pure Appl Chem https://doi.org/10.1515/pac-2017-0110

  19. Warnke S, Seo J, Boschmans J et al (2015) Protomers of benzocaine: solvent and permittivity dependence. J Am Chem Soc 137:4236–4242. https://doi.org/10.1021/jacs.5b01338

    Article  CAS  Google Scholar 

  20. Seo J, Hoffmann W, Warnke S et al (2016) Retention of native protein structures in the absence of solvent: a coupled ion mobility and spectroscopic study. Angew Chem Int Ed 55:14173–14176. https://doi.org/10.1002/anie.201606029

    Article  CAS  Google Scholar 

  21. Hernandez O, Isenberg S, Steinmetz V et al (2015) Probing mobility-selected saccharide isomers: selective ion–molecule reactions and wavelength-specific IR activation. J Phys Chem A 119:6057–6064. https://doi.org/10.1021/jp511975f

    Article  CAS  Google Scholar 

  22. Purves RW, Guevremont R (1999) Electrospray ionization high-field asymmetric waveform ion mobility spectrometry−mass spectrometry. Anal Chem 71:2346–2357. https://doi.org/10.1021/ac981380y

    Article  CAS  Google Scholar 

  23. Shvartsburg AA, Smith RD, Wilks A et al (2009) Ultrafast differential ion mobility spectrometry at extreme electric fields in multichannel microchips. Anal Chem 81:6489–6495. https://doi.org/10.1021/ac900892u

    Article  CAS  Google Scholar 

  24. Voronina L, Masson A, Kamrath M et al (2016) Conformations of Prolyl–peptide bonds in the Bradykinin 1–5 fragment in solution and in the gas phase. J Am Chem Soc 138:9224–9233. https://doi.org/10.1021/jacs.6b04550

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Institut Universitaire de France, ANR Circé (grant ANR-16-CE30-0012) the Fédération de Recherche André Marie Ampère and the Glycophysics Network (web: http://glyms.univ-lyon1.fr) funded by the French Agence Nationale de la Recherche (grant ANR-2015-MRSEI-0010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baptiste Schindler or Isabelle Compagnon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schindler, B., Depland, A.D., Renois-Predelus, G. et al. FAIMS-MS-IR spectroscopy workflow: a multidimensional platform for the analysis of molecular isoforms. Int. J. Ion Mobil. Spec. 20, 119–124 (2017). https://doi.org/10.1007/s12127-017-0225-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-017-0225-8

Keywords

Navigation