Skip to main content
Log in

Ion mobility-mass spectrometry separation of steroid structural isomers and epimers

  • Original Research
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

Drift tube ion mobility spectrometry (DTIMS) coupled with mass spectrometry was evaluated for its capabilities in rapid separation of endogenous isomeric steroids. These compounds, which included eight isomer groups, were investigated as protonated and sodiated species and collision cross sections were measured for all ionization species of each steroid. Pregnenolone (CCSN2 176.7 Å2) and 5α-dihydroprogesterone (CCSN2 191.4 Å2) could be separated as protonated species, and aldosterone (CCSN2 197.7 Å2) and cortisone (CCSN2 211.7 Å2) could be separated as sodiated monomers. However, the sodiated dimers of the remaining isomers yielded increased separation, resulting in baseline resolution. Specific structural differences including ring conformation and the chirality of hydroxyl groups were compared to evaluate their relative effects on collision cross section in isomers. These results indicated that C5 ring conformation isomers androsterone and etiocholanolone, which both contain a C3 α-hydroxyl group, yielded similar dimer CCS. Yet these compounds were well resolved from their respective β-hydroxyl epimers, trans-androsterone and epietiocholanolone. Alternative drift gases were evaluated, and carbon dioxide drift gas offered slight improvement in isomer resolution well, including allowing separation of testosterone (CCSCO2 330.0 Å2), dehydroepiandrosterone (CCSCO2 312.6 Å2), and epitestosterone (CCSCO2 305.6 Å2). Finally, different metal cation adducts, including alkali, alkaline earth, and first row transition metal adducts were analyzed, and several of these species provided improved resolution between steroid epimers. Overall, this study shows that drift tube ion mobility is a promising tool for improved separation of isomeric steroids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abraham GE (1969) Solid-phase radioimmunoassay of estradiol-17. J Clin Endocrinol Metab 29:866–870

    Article  CAS  Google Scholar 

  2. Sweeley CC, Horning EC (1960) Microanalytical separation of steroids by gas chromatography. Nature 187:144–145

    Article  CAS  Google Scholar 

  3. Sjovall J, Vihko R (1965) Determination of androsterone and dehydroepiandrosterone sulfates in human serum by gas–liquid chromatography. Steroids 6:597–604

    Article  CAS  Google Scholar 

  4. Weidolf LOG, Lee ED, Henion JD (1988) Determination of boldenone sulfoconjugate and related steroid sulfates in equine urine by high-performance liquid chromatography/tandem mass spectrometry. Biomed Environ Mass Spectrom 15:283–289

    Article  CAS  Google Scholar 

  5. Mason EA, Schamp HW (1958) Mobility of gaseous ions in weak electric fields. Ann Phys 4:233–270

    Article  CAS  Google Scholar 

  6. Cohen MJ, Karasek FW (1970) Plasma ChromatographyTM – a new dimension for gas chromatography and mass spectrometry. J Chromatogr Sci 8:330–337

    Article  CAS  Google Scholar 

  7. Fenn LS, McLean JA (2011) Structural resolution of carbohydrate positional and structural isomers based on gas-phase ion mobility-mass spectrometry. Phys Chem Chem Phys 13:2196–2205

    Article  CAS  Google Scholar 

  8. Clowers BH, Dwivedi P, Steiner WE, Hill HH, Bendiak B (2005) Separation of sodiated isobaric disaccharides and trisaccharides using electrospray ionization-atmospheric pressure ion mobility-time of flight mass spectrometry. J Am Soc Mass Spectrom 16:660–669

    Article  CAS  Google Scholar 

  9. Williams JP, Grabenauer M, Holland RJ, Carpenter CJ, Wormald MR, Giles K, Harvey DJ, Bateman RH, Scrivens JH, Bowers MT (2010) Characterization of simple isomeric oligosaccharides and the rapid separation of glycan mixtures by ion mobility mass spectrometry. Int J Mass Spectrom 298:119–127

    Article  CAS  Google Scholar 

  10. Hill HH, Bendiak B, Clowers BH, Zhu M (2009) Ion mobility-mass spectrometry analysis of isomeric carbohydrate precursor ions. Anal Bioanal Chem 394:1853–1867

    Article  Google Scholar 

  11. Kliman M, May JC, McLean JA (2011) Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry. Biochim Biophys Acta Mol Cell Biol Lipids 1811:935–945

    Article  CAS  Google Scholar 

  12. Damen CWN, Isaac G, Langridge J, Hankemeier T, Vreeken RJ (2014) Enhanced lipid isomer separation in human plasma using reversed-phase UPLC with ion-mobility/high-resolution MS detection. J Lipid Res 55:1772–1783

    Article  CAS  Google Scholar 

  13. Paglia G, Kliman M, Claude E, Geromanos S, Astarita G (2015) Applications of ion-mobility mass spectrometry for lipid analysis. Anal Bioanal Chem 407:4995–5007

    Article  CAS  Google Scholar 

  14. Srebalus Barnes CA, Hilderbrand AE, Valentine SJ, Clemmer DE (2002) Resolving isomeric peptide mixtures: a combined HPLC/ion mobility-TOFMS analysis of a 4000-component combinatorial library. Anal Chem 74:26–36

    Article  CAS  Google Scholar 

  15. Wu C, Siems WF, Klasmeier J, Hill HH (2000) Separation of isomeric peptides using electrospray ionization/high-resolution ion mobility spectrometry. Anal Chem 72:391–395

    Article  CAS  Google Scholar 

  16. Chouinard CD, Cruzeiro VWD, Beekman CR, Roitberg AE, Yost RA (2016) Investigating differences in gas-phase conformations of 25-hydroxyvitamin D3 sodiated epimers using ion mobility-mass spectrometry and theoretical modeling. Anal Chem, Submitted

  17. Domalain V, Hubert-Roux M, Tognetti V, Joubert L, Lange CM, Rouden J, Afonso C (2014) Enantiomeric differentiation of aromatic amino acids using traveling wave ion mobility-mass spectrometry. Chem Sci 5:3234–3239

    Article  CAS  Google Scholar 

  18. Chouinard CD, Wei MS, Beekman CR, Kemperman RHJ, Yost RA (2016) Ion mobility in clinical analysis: current progress and future perspectives. Clin Chem 62:124–133

    Article  CAS  Google Scholar 

  19. Eatherton RL, Morrissey MA, Hill HH (1988) Comparison of ion mobility constants of selected drugs after capillary gas chromatography and capillary supercritical fluid chromatography. Anal Chem 60:2240–2243

    Article  CAS  Google Scholar 

  20. Buryakov IA, Krylov EV, Nazarov EG, Rasulev UK (1993) A new method of separation of multi-atomic ions by mobility at atmospheric pressure using a high-frequency amplitude-asymmetric strong electric field. Int J Mass Spectrom Ion Process 128:43–148

    Article  Google Scholar 

  21. Guddat S, Thevis M, Kapron J, Thomas A, Schanzer W (2009) Application of FAIMS to anabolic androgenic steroids in sport drug testing. Drug Test Anal 1:545–553

    Article  CAS  Google Scholar 

  22. Jin W, Jarvis M, Star-Weinstock M, Altemus M (2013) A sensitive and selective LC-differential mobility-mass spectrometric analysis of allopregnanolone and pregnanolone in human plasma. Anal Bioanal Chem 405:9497–9508

    Article  CAS  Google Scholar 

  23. Ray JA, Kushnir MM, Yost RA, Rockwood AL, Meikle WA (2015) Performance enhancement in the measurement of 5 endogenous steroids by LC–MS/MS combined with differential ion mobility spectrometry. Clin Chim Acta 438:330–336

    Article  CAS  Google Scholar 

  24. Covey TR, Le Blanc JCY, Schneider BB, Nazarov EJ (2015) Polar vapor-enhanced separations with planar differential mobility spectrometry-mass spectrometry. Spectroscopy: 1–8

  25. Pringle SD, Giles K, Wildgoose JL, Williams JP, Slade SE, Thalassinos K, Bateman RH, Bowers MT, Scrivens JH (2007) An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int J Mass Spectrom 261:1–12

    Article  CAS  Google Scholar 

  26. Mirmahdieh S, Mardihallaj A, Hashemian Z, Razavizadeh J, Ghaziaskar H, Khayamian T (2011) Analysis of testosterone in human urine using molecularly imprinted solid-phase extraction and corona discharge ion mobility spectrometry. J Sep Sci 34:107–112

    Article  CAS  Google Scholar 

  27. Kaur-Atwal G, Reynolds JC, Mussell C, Champarnaud E, Knapman TW, Ashcroft AE, Connor GO, Christie DR, Creaser CS (2011) Determination of testosterone and epitestosterone glucuronides in urine by ultra performance liquid chromatography-ion mobility-mass spectrometry. Analyst 136:3911–3916

    Article  CAS  Google Scholar 

  28. Ahonen L, Fasciotti M, Gennas GB, Kotiaho T, Daroda RJ, Eberlin M, Kostiainen R (2013) Separation of steroid isomers by ion mobility mass spectrometry. J Chromatogr A 1310:133–137

    Article  CAS  Google Scholar 

  29. Ochoa ML, Harrington PB (2004) Detection of methamphetamine in the presence of nicotine using in situ chemical derivatization and ion mobility spectrometry. Anal Chem 76:985–991

    Article  CAS  Google Scholar 

  30. Fenn LS, McLean JA (2008) Enhanced carbohydrate structural selectivity in ion mobility-mass spectrometry analyses by boronic acid derivatization. Chem Commun: 5505–5507

  31. Dwivedi P, Wu C, Matz LM, Clowers BH, Siems WF, Hill HH (2006) Gas-phase chiral separations by ion mobility spectrometry. Anal Chem 78:8200–8206

    Article  CAS  Google Scholar 

  32. Asbury G, Hill HH (2000) Using different drift gases to change separation factors in ion mobility spectrometry. Anal Chem 72:580–5844

    Article  CAS  Google Scholar 

  33. Clowers BH, Hill HH (2006) Influence of cation adduction on the separation characteristics of flavonoid diglycoside isomers using dual gate-ion mobility-quadrupole ion trap mass spectrometry. J Mass Spectrom 41:339–351

    Article  CAS  Google Scholar 

  34. Domalain V, Tognetti V, Hubert-Roux M, Lange CM, Joubert L, Baudoux J, Rouden J, Afonso C (2013) Role of cationization and multimers formation for diastereomers differentiation by ion mobility-mass spectrometry. J Am Soc Mass Spectrom 24:1437–1445

    Article  CAS  Google Scholar 

  35. Jackson P, Attalla MI (2010) N-Nitrosopiperazines form at high pH in post-combustion capture solutions containing piperazine: a low-energy collisional behaviour study. Rapid Commun Mass Spectrom 24:3567–3577

    Article  CAS  Google Scholar 

  36. Domalain V, Hubert-Roux M, Lange CM, Baudoux J, Rouden J, Afonso C (2014) Use of transition metals to improve the diastereomers differentiation by ion mobility and mass spectrometry. J Mass Spectrom 49:423–427

    Article  CAS  Google Scholar 

  37. Leavell MD, Gaucher SP, Leary JA, Taraszka JA, Clemmer DE (2002) Conformational studies of Zn-ligand-hexose diastereomers using ion mobility measurements and density functional theory calculations. J Am Soc Mass Spectrom 13:284–293

    Article  CAS  Google Scholar 

  38. Chouinard CD, Cruzeiro VWD, Roitberg AE, Yost RA (2016) Experimental and theoretical investigation of sodiated multimers of steroid epimers with ion mobility-mass spectrometry. J Am Soc Mass Spectrom. doi:10.1007/s13361-016-1525-7

    Google Scholar 

  39. Revercomb HE, Mason EA (1975) Theory of plasma chromatography/gaseous electrophoresis- a review. Anal Chem 47:970–983

    Article  CAS  Google Scholar 

  40. Mason EA, McDaniel EW (1988) Transport properties of ions in gases. Wiley, New York

    Book  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from Agilent Technologies, Wellspring Clinical Lab, and the University of Florida Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Yost.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 425 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chouinard, C.D., Beekman, C.R., Kemperman, R.H.J. et al. Ion mobility-mass spectrometry separation of steroid structural isomers and epimers. Int. J. Ion Mobil. Spec. 20, 31–39 (2017). https://doi.org/10.1007/s12127-016-0213-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-016-0213-4

Keywords

Navigation