Skip to main content

Advertisement

Log in

Philadelphia Chromosome Positive and Philadelphia-Like Acute Lymphoblastic Leukemia in Children and Adolescents: Current Management, Controversies and Emerging Concepts

  • Review Article
  • Published:
Indian Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Philadelphia chromosome positive (Ph+) acute lymphoblastic lymphoma (ALL) is an uncommon subtype of ALL in children, seen in 2–5% cases. Diagnostic evaluation includes conventional karyotyping and detection of BCR-ABL1 translocation by fluorescence in-situ hybridization (FISH) or reverse transcriptase polymerase chain reaction (RT-PCR). For children, the frontline management includes combination of intensive chemotherapy along with imatinib (300–340 mg/m2/d) or dasatinib (60–80 mg/m2/d). Imatinib/dasatinib should be introduced in induction as soon as results for BCR-ABL are available. Minimal residual disease (MRD) monitoring is essential; multi-parametric flowcytometry and immunoglobulin/T-cell receptor rearrangement PCR are the preferred methods. Intrathecal therapy with at least 12 doses of methotrexate is adequate for central nervous system (CNS) prophylaxis, but cranial radiation is necessary for CNS3 involvement. Allogeneic hematopoietic stem cell transplantation (HSCT) in first remission may be considered in high-risk cases (persistent MRD positivity/induction failure). Maintenance therapy with tyrosine kinase inhibitors (TKI) in children is debatable, with potential concerns for long term adverse effects. At relapse, the choice of TKI is guided by the presence of BCR-ABL tyrosine kinase domain resistance mutations, although the frequency of resistance mutations in children are lower. Allogeneic HSCT is essential for consolidation in second remission, if not done. Ph-like ALL is a newly recognized molecular entity, with gene expression profile similar to Ph+ALL and poor survival outcomes. In resource-constrained settings, a stepwise cost-effective diagnostic evaluation should be considered among high-risk patients without recurrent genetic abnormalities. Current treatment strategies remain similar to Ph-negative ALL. Enrolment in clinical trials is encouraged for such children to evaluate potential targeted agents in this subtype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schultz KR, Prestidge T, Camitta B. Philadelphia chromosome-positive acute lymphoblastic leukemia in children: new and emerging treatment options. Expert Rev Hematol. 2010;3:731–42.

    Article  PubMed  Google Scholar 

  2. Nashed AL, Rao KW, Gulley ML. Clinical applications of BCR-ABL molecular testing in acute leukemia. J Mol Diagn. 2003;5:63–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Gleissner B, Gökbuget N, Bartram CR; German Multicenter Trials of Adult Acute Lymphoblastic Leukemia Study Group, et al. Leading prognostic relevance of the BCR-ABL translocation in adult acute B-lineage lymphoblastic leukemia: a prospective study of the German Multicenter Trial Group and confirmed polymerase chain reaction analysis. Blood. 2002;99:1536–43.

    Article  PubMed  CAS  Google Scholar 

  4. Pelz A, Kröning H, Franke A, Wieacker P, Stumm M. High reliability and sensitivity of the BCR/ABL1 D-FISH test for the detection of BCR/ABL rearrangements. Ann Hematol. 2002;81:147–53.

    Article  PubMed  CAS  Google Scholar 

  5. Schlieben S, Borkhardt A, Reinisch I, et al. Incidence and clinical outcome of children with BCR/ABL-positive acute lymphoblastic leukemia (ALL). A prospective RT-PCR study based on 673 patients enrolled in the German pediatric multicenter therapy trials ALL-BFM-90 and CoALL-05-92. Leukemia. 1996;10:957–63.

    PubMed  CAS  Google Scholar 

  6. Chopra A, Soni S, Verma D, et al. Prevalence of common fusion transcripts in acute lymphoblastic leukemia: a report of 304 cases: fusion transcripts in ALL. Asia Pac J Clin Oncol. 2015;11:293–8.

    Article  PubMed  Google Scholar 

  7. Sazawal S, Bakhshi S, Raina V, Swaroop C, Saxena R. Detection and clinical relevance of BCR-ABL fusion gene in childhood T-lineage acute lymphoblastic leukemia: a report on 4 cases. J Pediatr Hematol Oncol. 2009;31:850–2.

    Article  PubMed  CAS  Google Scholar 

  8. Uckun FM, Nachman JB, Sather HN, et al. Clinical significance of Philadelphia chromosome positive pediatric acute lymphoblastic leukemia in the context of contemporary intensive therapies: a report from the Children’s Cancer Group. Cancer. 1998;83:2030–9.

    Article  PubMed  CAS  Google Scholar 

  9. Aricò M, Valsecchi MG, Camitta B, et al. Outcome of treatment in children with Philadelphia chromosome–positive acute lymphoblastic leukemia. N Engl J Med. 2000;342:998–1006.

    Article  PubMed  Google Scholar 

  10. Slayton WB, Schultz KR, Silverman LB, Hunger SP. How we approach Philadelphia chromosome-positive acute lymphoblastic leukemia in children and young adults. Pediatr Blood Cancer. 2020;67:e28543.

    Article  PubMed  Google Scholar 

  11. Arun AK, Senthamizhselvi A, Mani S, et al. Frequency of rare BCR-ABL1 fusion transcripts in chronic myeloid leukemia patients. Int J Lab Hematol. 2017;39:235–42.

    Article  PubMed  CAS  Google Scholar 

  12. Suryanarayan K, Hunger S, Kohler S, et al. Consistent involvement of the bcr gene by 9;22 breakpoints in pediatric acute leukemias. Blood. 1991;77:324–30.

    Article  PubMed  CAS  Google Scholar 

  13. Schultz KR, Bowman WP, Aledo A, et al. Improved early event-free survival with imatinib in Philadelphia chromosome–positive acute lymphoblastic leukemia: a Children’s Oncology Group Study. J Clin Oncol. 2009;27:5175–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Biondi A, Schrappe M, De Lorenzo P, et al. Imatinib after induction for treatment of children and adolescents with Philadelphia-chromosome-positive acute lymphoblastic leukaemia (EsPhALL): a randomised, open-label, intergroup study. Lancet Oncol. 2012;13:936–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Biondi A, Gandemer V, De Lorenzo P, et al. Imatinib treatment of paediatric Philadelphia chromosome-positive acute lymphoblastic leukaemia (EsPhALL2010): a prospective, intergroup, open-label, single-arm clinical trial. Lancet Haematol. 2018;5:e641-52.

    Article  PubMed  Google Scholar 

  16. Slayton WB, Schultz KR, Kairalla JA, et al. Dasatinib plus intensive chemotherapy in children, adolescents, and young adults with Philadelphia chromosome–positive acute lymphoblastic leukemia: results of Children’s Oncology Group Trial AALL0622. J Clin Oncol. 2018;36:2306–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Shen S, Chen X, Cai J, et al. Effect of dasatinib vs imatinib in the treatment of pediatric Philadelphia chromosome–positive acute lymphoblastic leukemia: a randomized clinical trial. JAMA Oncol. 2020;6:358–66.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hunger SP, Saha V, Devidas M, et al. CA180-372: an international collaborative phase 2 trial of dasatinib and chemotherapy in pediatric patients with newly diagnosed Philadelphia chromosome positive acute lymphoblastic leukemia (ph + ALL). Blood. 2017;130:98.

    Article  Google Scholar 

  19. Pushpam D, Bakhshi S. Pharmacology of tyrosine kinase inhibitors in chronic myeloid leukemia; a clinician’s perspective. DARU J Pharm Sci. 2020;28:371–85.

    Article  CAS  Google Scholar 

  20. Kodama Y, Sato A, Kato K, et al. Ponatinib in pediatric patients with Philadelphia chromosome-positive leukemia: a retrospective survey of the Japan Children’s Cancer Group. Int J Hematol. 2022;116:131–8.

    Article  PubMed  CAS  Google Scholar 

  21. Schultz KR, Carroll A, Heerema NA, et al. Long-term follow-up of imatinib in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: Children’s Oncology Group Study AALL0031. Leukemia. 2014;28:1467–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Saleh K, Fernandez A, Pasquier F. Treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia in adults. Cancers. 2022;14:1805.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Das N, Banavali S, Bakhshi S, et al. Protocol for ICiCLe-ALL-14 (InPOG-ALL-15-01): a prospective, risk stratified, randomised, multicentre, open label, controlled therapeutic trial for newly diagnosed childhood acute lymphoblastic leukaemia in India. Trials. 2022;23:102.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fielding AK. Curing ph + ALL: assessing the relative contributions of chemotherapy, TKIs, and allogeneic stem cell transplant. Hematology. 2019;2019:24–9.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Short NJ, Jabbour E, Sasaki K, et al. Impact of complete molecular response on survival in patients with Philadelphia chromosome–positive acute lymphoblastic leukemia. Blood. 2016;128:504–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Cazzaniga G, De Lorenzo P, Alten J, et al. Predictive value of minimal residual disease in Philadelphia-chromosome-positive acute lymphoblastic leukemia treated with imatinib in the European intergroup study of post-induction treatment of Philadelphia-chromosome-positive acute lymphoblastic leukemia, based on immunoglobulin/T-cell receptor and BCR/ABL1 methodologies. Haematologica. 2018;103:107–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Sirvent N, Suciu S, Bertrand Y, Uyttebroeck A, Lescoeur B, Otten J. Overt testicular disease (OTD) at diagnosis is not associated with a poor prognosis in childhood acute lymphoblastic leukemia: results of the EORTC CLG study 58881. Pediatr Blood Cancer. 2007;49:344–8.

    Article  PubMed  Google Scholar 

  28. Paul S, Sasaki K, Savoy JM, et al. 12 versus 8 prophylactic intrathecal (IT) chemotherapy administration decrease incidence of central nervous system (CNS) relapse in patients (pts) with newly diagnosed Philadelphia (Ph)-positive acute lymphocytic leukemia (ALL). Blood. 2019;134:3810.

    Article  Google Scholar 

  29. Salzer WL, Burke MJ, Devidas M, et al. Triple intrathecal therapy (methotrexate/hydrocortisone/cytarabine) does not improve disease-free survival versus intrathecal methotrexate alone in children with high risk B-lymphoblastic leukemia: results of children’s Oncology Group Study AALL1131. Blood. 2018;132:35.

    Article  Google Scholar 

  30. Brissot E, Labopin M, Beckers MM, et al. Tyrosine kinase inhibitors improve long-term outcome of allogeneic hematopoietic stem cell transplantation for adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia. Haematologica. 2015;100:392–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Saini N, Marin D, Ledesma C, et al. Impact of TKIs post–allogeneic hematopoietic cell transplantation in Philadelphia chromosome–positive ALL. Blood. 2020;136:1786–9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shima H, Tokuyama M, Tanizawa A, et al. Distinct impact of imatinib on growth at prepubertal and pubertal ages of children with chronic myeloid leukemia. J Pediatr. 2011;159:676–81.

    Article  PubMed  CAS  Google Scholar 

  33. Singh N, Bakhshi S. Imatinib-induced dental hyperpigmentation in childhood chronic myeloid leukemia. J Pediatr Hematol Oncol. 2007;29:208–9.

    Article  PubMed  Google Scholar 

  34. Choeyprasert W, Yansomdet T, Natesirinilkul R, Wejaphikul K, Charoenkwan P. Adverse effects of imatinib in children with chronic myelogenous leukemia. Pediatr Int. 2017;59:286–92.

    Article  PubMed  CAS  Google Scholar 

  35. Pushpam D, Bakhshi S. Paediatric chronic myeloid leukaemia: is it really a different disease? Indian J Med Res. 2019;149:600–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Chang BH, Willis SG, Stork L, et al. Imatinib resistant BCR-ABL1 mutations at relapse in children with ph + ALL: a Children’s Oncology Group (COG) study. Br J Haematol. 2012;157:507–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Ganguly S, Pushpam D, Mian A, Chopra A, Gupta R, Bakhshi S. Real-world experience of imatinib in pediatric chronic phase chronic myeloid leukemia: a single-center experience from India. Clin Lymphoma Myeloma Leuk. 2020;20:e437-44.

    Article  PubMed  Google Scholar 

  38. Aubert L, Petit A, Bertrand Y, et al. Therapeutic approach and outcome of children with Philadelphia chromosome-positive acute lymphoblastic leukemia at first relapse in the era of tyrosine kinase inhibitors: an SFCE retrospective study. Pediatr Blood Cancer. 2022;69:e29441.

    Article  PubMed  CAS  Google Scholar 

  39. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.

    Article  PubMed  CAS  Google Scholar 

  40. Jain S, Abraham A. BCR-ABL1–like B-acute lymphoblastic leukemia/lymphoma: a comprehensive review. Arch Pathol Lab Med. 2020;144:150–5.

    Article  PubMed  CAS  Google Scholar 

  41. Totadri S, Singh M, Trehan A, Varma N, Bhatia P. Keeping PACE with Ph positive to Ph-like detection in B-lineage acute lymphoblastic leukemia: a practical and cost effective (PACE) approach in a resource constrained setting. Indian J Hematol Blood Transfus. 2018;34:595–601.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Płotka A, Lewandowski K. BCR/ABL1-like acute lymphoblastic leukemia: from diagnostic approaches to molecularly targeted therapy. Acta Haematol. 2022;145:122–31.

    Article  PubMed  Google Scholar 

  43. Yadav V, Ganesan P, Veeramani R, Kumar VD. Philadelphia-like acute lymphoblastic leukemia: a systematic review. Clin Lymphoma Myeloma Leuk. 2021;21:e57-65.

    Article  PubMed  CAS  Google Scholar 

  44. Moorman AV, Schwab C, Winterman E, et al. Adjuvant tyrosine kinase inhibitor therapy improves outcome for children and adolescents with acute lymphoblastic leukaemia who have an ABL-class fusion. Br J Haematol. 2020;191:844–51.

    Article  PubMed  CAS  Google Scholar 

  45. Loh ML, Zhang J, Harvey RC, et al. Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: a report from the Children’s Oncology Group TARGET Project. Blood. 2013;121:485–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SB assembled the co-authorship team, provided intellectual inputs, wrote and edited the manuscript. SG, AS, DP conducted literature review, wrote and edited the manuscript. All authors approved the final version of the manuscript. SB will act as guarantor for this manuscript.

Corresponding author

Correspondence to Sameer Bakhshi.

Ethics declarations

Conflict of Interest

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganguly, S., Sasi, A., Pushpam, D. et al. Philadelphia Chromosome Positive and Philadelphia-Like Acute Lymphoblastic Leukemia in Children and Adolescents: Current Management, Controversies and Emerging Concepts. Indian J Pediatr 91, 37–46 (2024). https://doi.org/10.1007/s12098-023-04782-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12098-023-04782-8

Keywords

Navigation