Skip to main content
Log in

Nephrolithiasis: Approach to Diagnosis and Management

  • Review Article
  • Published:
The Indian Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Although kidney stones are less common in children than in adults, incidence in children is rising. Kidney stones may lead to significant morbidity in addition to escalating medical costs. Clinical presentation is variable. Bilateral kidney stones in a younger child should prompt work-up for primary hyperoxaluria. Metabolic abnormalities are more frequent in children and can result in frequent stone recurrence. Whole exome sequencing data shows genetic defects in about 30% of stone formers. 24 h urine collection should be conducted when patient receives his usual diet and fluid intake with normal activity. Infrared spectroscopy and X-ray diffraction are used for stone analysis. Urine studies should be delayed by 4–6 wk after stone fragmentation or treatment of any stone related complications. The goal of evaluation is to identify modifiable risk factors for which targeted therapy may be instituted. Primary indications for surgical intervention include pain, infection and obstruction. Extracorporeal shockwave lithotripsy (ESWL), ureteroscopy, and percutaneous nephrolithotomy (PCNL) are most commonly used, and selection is based on stone size, anatomy, composition and anatomy. Advances in technology have allowed a shift to minimally invasive surgeries. Comprehensive management requires multidisciplinary team. Children with kidney stones require long term follow-up with periodic assessment of stone forming activity and ascertaining stone burden. High index of suspicion should be there to diagnose diseases like primary hyperoxaluria, Dent’s disease, renal tubular acidosis (RTA) etc. as these diseases have ramifications on kidney function and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dwyer ME, Krambeck AE, Bergstralh EJ, Milliner DS, Lieske JC, Rule AD. Temporal trends in incidence of kidney stones among children: a 25-year population based study. J Urol. 2012;188:247–52.

    PubMed  PubMed Central  Google Scholar 

  2. Routh JC, Graham DA, Nelson CP. Epidemiological trends in pediatric urolithiasis at United States freestanding pediatric hospitals. J Urol. 2010;184:1100–5.

    PubMed  Google Scholar 

  3. Tasian GE, Ross ME, Song L, et al. Annual incidence of nephrolithiasis among children and adults in South Carolina from 1997 to 2012. Clin J Am Soc Nephrol. 2016;11:488–96.

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Alexander RT, Hemmelgarn BR, Wiebe N, et al. Kidney stones and kidney function loss: a cohort study. BMJ. 2012;345:e5287.

  5. Ferraro PM, Taylor EN, Eisner BH, et al. History of kidney stones and the risk of coronary heart disease. JAMA. 2013;310:408–15.

  6. Denburg MR, Leonard MB, Haynes K, et al. Risk of fracture in urolithiasis: a population-based cohort study using the health improvement network. Clin J Am Soc Nephrol. 2014;9:2133–40.

    PubMed  PubMed Central  Google Scholar 

  7. Pearle MS, Calhoun EA, Curhan GC, Project UDoA. Urologic diseases in America project: Urolithiasis. J Urol. 2005;173:848–57.

    PubMed  Google Scholar 

  8. Wang H-HS, Wiener JS, Lipkin ME, Scales CD Jr, Ross SS, Routh JC. Estimating the nationwide, hospital based economic impact of pediatric urolithiasis. J Urol. 2015;193:1855–9.

    PubMed  Google Scholar 

  9. Ward JB, Feinstein L, Pierce C, et al. Pediatric urinary stone disease in the United States: the urologic diseases in America project. Urology. 2019;129:180–7.

    PubMed  PubMed Central  Google Scholar 

  10. Issler N, Dufek S, Kleta R, Bockenhauer D, Smeulders N, van‘t Hoff W. Epidemiology of paediatric renal stone disease: a 22-year single centre experience in the UK. BMC Nephrol. 2017;18:136.

  11. Novak TE, Lakshmanan Y, Trock BJ, Gearhart JP, Matlaga BR. Sex prevalence of pediatric kidney stone disease in the United States: An epidemiologic investigation. Urology. 2009;74:104–7.

    PubMed  Google Scholar 

  12. Cambareri GM, Giel DW, Bayne AP, et al. Do overweight and obese pediatric stone formers have differences in metabolic abnormalities compared with normal-weight stone formers? Urology. 2017;101:26–30.

    PubMed  Google Scholar 

  13. Taylor EN, Stampfer MJ, Curhan GC. Obesity, weight gain, and the risk of kidney stones. JAMA. 2005;293:455–62.

  14. Kim SS, Luan X, Canning DA, Landis JR, Keren R. Association between body mass index and urolithiasis in children. J Urol. 2011;186:1734–9.

    PubMed  PubMed Central  Google Scholar 

  15. Sas DJ, Becton LJ, Tutman J, Lindsay LA, Wahlquist AH. Clinical, demographic, and laboratory characteristics of children with nephrolithiasis. Urolithiasis. 2016;44:241–6.

    PubMed  CAS  Google Scholar 

  16. Alfandary H, Haskin O, Davidovits M, Pleniceanu O, Leiba A, Dagan A. Increasing prevalence of nephrolithiasis in association with increased body mass index in children: a population based study. J Urol. 2018;199:1044–9.

    PubMed  Google Scholar 

  17. VanDervoort K, Wiesen J, Frank R, et al. Urolithiasis in pediatric patients: a single center study of incidence, clinical presentation and outcome. J Urol. 2007;177:2300–5.

    PubMed  Google Scholar 

  18. Milliner DS, Murphy ME. Urolithiasis in pediatric patients. Mayo Clin Proc. 1993;68:241–8.

    PubMed  CAS  Google Scholar 

  19. Hernandez JD, Ellison JS, Lendvay TS. Current trends, evaluation, and management of pediatric nephrolithiasis. JAMA Pediatr. 2015;169:964–70.

    PubMed  Google Scholar 

  20. Miller LA, Stapleton FB. Urinary volume in children with urolithiasis. J Urol. 1989;141:918–20.

    PubMed  CAS  Google Scholar 

  21. Sakhaee K, Harvey JA, Padalino PK, Whitson P, Pak CY. The potential role of salt abuse on the risk for kidney stone formation. J Urol. 1993;150:310–2.

    PubMed  CAS  Google Scholar 

  22. Sampath A, Kossoff EH, Furth SL, Pyzik PL, Vining EP. Kidney stones and the ketogenic diet: risk factors and prevention. J Child Neurol. 2007;22:375–8.

    PubMed  Google Scholar 

  23. Ferraro PM, Taylor EN, Gambaro G, Curhan GC. Soda and other beverages and the risk of kidney stones. Clin J Am Soc Nephrol. 2013;8:1389–95.

    PubMed  PubMed Central  Google Scholar 

  24. Kokorowski PJ, Hubert K, Nelson CP. Evaluation of pediatric nephrolithiasis. Indian J Urol. 2010;26:531–5.

    PubMed  PubMed Central  Google Scholar 

  25. Fulgham PF, Assimos DG, Pearle MS, Preminger GM. Clinical effectiveness protocols for imaging in the management of ureteral calculous disease: AUA technology assessment. T J Urol. 2013;189:1203–13.

    Google Scholar 

  26. Riccabona M, Avni FE, Blickman JG, et al. Imaging recommendations in paediatric uroradiology. Pediatr Radiol. 2009;39:891–8.

    PubMed  Google Scholar 

  27. Goske MJ, Applegate KE, Boylan J, et al. The image gently campaign: working together to change practice. Am J Roentgenol. 2008;190:273–4.

    Google Scholar 

  28. Roberson NP, Dillman JR, O’Hara SM, et al. Comparison of ultrasound versus computed tomography for the detection of kidney stones in the pediatric population: a clinical effectiveness study. Pediatr Radiol. 2018;48:962–72.

    PubMed  Google Scholar 

  29. Passerotti C, Chow JS, Silva A, et al. Ultrasound versus computerized tomography for evaluating urolithiasis. J Urol. 2009;182:1829–34.

    PubMed  Google Scholar 

  30. Smith-Bindman R, Aubin C, Bailitz J, et al. Ultrasonography versus computed tomography for suspected nephrolithiasis. New Engl J Med. 2014;371:1100–10.

    PubMed  CAS  Google Scholar 

  31. Granata A, Andrulli S, Bigi M, et al. Predictive role of duplex Doppler ultrasonography in the diagnosis of acute renal obstruction in patients with unilateral renal colic. Clin Nephrol. 2009;71:680–6.

    PubMed  CAS  Google Scholar 

  32. Kielar AZ, Shabana W, Vakili M, Rubin J. Prospective evaluation of Doppler sonography to detect the twinkling artifact versus unenhanced computed tomography for identifying urinary tract calculi. J Ultrasound Med. 2012;31:1619–25.

    PubMed  Google Scholar 

  33. Niemann T, Kollmann T, Bongartz G. Diagnostic performance of low-dose CT for the detection of urolithiasis: a meta-analysis. Am J Roentgenol. 2008;191:396–401.

    Google Scholar 

  34. Khong P, Ringertz H, Donoghue V, et al. ICRP publication 121: radiological protection in paediatric diagnostic and interventional radiology. Ann ICRP. 2013;42:1–63.

    PubMed  Google Scholar 

  35. Ristau B, Dudley AG, Casella DP, et al. Tracking of radiation exposure in pediatric stone patients: The time is now. J Pediatr Urol. 2015;11:339. e1–5.

    CAS  Google Scholar 

  36. Routh JC, Graham DA, Nelson CP. Trends in imaging and surgical management of pediatric urolithiasis at American pediatric hospitals. J Urol. 2010;184:1816–22.

    PubMed  Google Scholar 

  37. Tasian GE, Pulido JE, Keren R, et al. Use of and regional variation in initial CT imaging for kidney stones. Pediatrics. 2014;134:909–15.

    PubMed  PubMed Central  Google Scholar 

  38. Johnson EK, Graham DA, Chow JS, Nelson CP. Nationwide emergency department imaging practices for pediatric urolithiasis: room for improvement. J Urol. 2014;192:200–6.

    PubMed  PubMed Central  Google Scholar 

  39. ElSheemy MS, Shouman AM, Shoukry AI, et al. Ureteric stents vs percutaneous nephrostomy for initial urinary drainage in children with obstructive anuria and acute renal failure due to ureteric calculi: a prospective, randomised study. BJU Int. 2015;115:473–9.

    PubMed  Google Scholar 

  40. Kalorin CM, Zabinski A, Okpareke I, White M, Kogan BA. Pediatric urinary stone disease—does age matter? J Urol. 2009;181:2267–71.

    PubMed  Google Scholar 

  41. Pietrow PK, Pope JC, Adams MC, Shyr Y, Brock JW. Clinical outcome of pediatric stone disease. J Urol. 2002;167:670–3.

    PubMed  Google Scholar 

  42. Dangle P, Ayyash O IV, Shaikh H III, et al. Predicting spontaneous stone passage in prepubertal children: a single institution cohort. J Endourol. 2016;30:945–9.

    PubMed  Google Scholar 

  43. Özcan C, Aydoğdu O, Senocak C, et al. Predictive factors for spontaneous stone passage and the potential role of serum C-reactive protein in patients with 4 to 10 mm distal ureteral stones: a prospective clinical study. J Urol. 2015;194:1009–13.

    PubMed  Google Scholar 

  44. Ayaz UY, Dilli A, Ayaz S, Api A. Ultrasonographic evaluation of ureteral stones in children: can we use stone width as a predictor of spontaneous passage? Med Ultrason. 2014;16:298–303.

    PubMed  Google Scholar 

  45. Masoumi K, Forouzan A, Darian AA, Feli M, Barzegari H, Khavanin A. Comparison of clinical efficacy of intravenous acetaminophen with intravenous morphine in acute renal colic: a randomized, double-blind, controlled trial. Emerg Med Int. 2014;2014:571326.

    PubMed  PubMed Central  Google Scholar 

  46. Holdgate A, Pollock T. Systematic review of the relative efficacy of non-steroidal anti-inflammatory drugs and opioids in the treatment of acute renal colic. BMJ. 2004;328:1401.

    PubMed  PubMed Central  Google Scholar 

  47. Hollingsworth JM, Rogers MA, Kaufman SR, et al. Medical therapy to facilitate urinary stone passage: a meta-analysis. Lancet. 2006;368:1171–9.

    PubMed  Google Scholar 

  48. Tian D, Li N, Huang W, Zong H, Zhang Y. The efficacy and safety of adrenergic alpha-antagonists in treatment of distal ureteral stones in pediatric patients: a systematic review and meta-analysis. J Pediatr Surg. 2017;52:360–5.

    PubMed  Google Scholar 

  49. Velázquez N, Zapata D, Wang H-HS, Wiener JS, Lipkin ME, Routh JC. Medical expulsive therapy for pediatric urolithiasis: systematic review and meta-analysis. J Pediatr Urol. 2015;11:321–7.

    PubMed  PubMed Central  Google Scholar 

  50. Assimos D, Krambeck A, Miller NL, et al. Surgical management of stones: American urological association/Endourological society guideline. Part I J Urol. 2016;196:1153–60.

    PubMed  Google Scholar 

  51. Sarica K, Sahin C. Contemporary minimally invasive surgical management of urinary stones in children. Eur Urol Suppl. 2017;16:2–7.

    Google Scholar 

  52. Yucel S, Akin Y, Danisman A, Guntekin E. Complications and associated factors of pediatric extracorporeal shock wave lithotripsy. J Urol. 2012;187:1812–6.

    PubMed  Google Scholar 

  53. Fayad A, El-Sheikh M, Abdelmohsen M, Abdelraouf H. Evaluation of renal function in children undergoing extracorporeal shock wave lithotripsy. J Urol. 2010;184:1111–5.

    PubMed  CAS  Google Scholar 

  54. El-Nahas AR, Awad BA, El-Assmy AM, et al. Are there long-term effects of extracorporeal shockwave lithotripsy in paediatric patients? BJU Int. 2013;111:666–71.

    PubMed  Google Scholar 

  55. Denburg MR, Jemielita TO, Tasian GE, et al. Assessing the risk of incident hypertension and chronic kidney disease after exposure to shock wave lithotripsy and ureteroscopy. Kidney Int. 2016;89:185–92.

    PubMed  PubMed Central  Google Scholar 

  56. Ishii H, Griffin S, Somani BK. Ureteroscopy for stone disease in the paediatric population: a systematic review. BJU Int. 2015;115:867–73.

    PubMed  Google Scholar 

  57. Herndon CA, Viamonte L, Joseph DB. Ureteroscopy in children: is there a need for ureteral dilation and postoperative stenting? J Pediatr Urol. 2006;2:290–3.

    PubMed  Google Scholar 

  58. Bhageria A, Nayak B, Seth A, Dogra PN, Kumar R. Paediatric percutaneous nephrolithotomy: single-centre 10-year experience. J Pediatr Urol. 2013;9:472–5.

  59. ElSheemy MS, Daw K, Habib E, et al. Lower calyceal and renal pelvic stones in preschool children: a comparative study of mini-percutaneous nephrolithotomy versus extracorporeal shockwave lithotripsy. Int J Urol. 2016;23:564–70.

    PubMed  Google Scholar 

  60. Pelit ES, Atis G, Kati B, et al. Comparison of mini-percutaneous nephrolithotomy and retrograde intrarenal surgery in preschool-aged children. Urology. 2017;101:21–5.

    PubMed  Google Scholar 

  61. Colleran GC, Callahan MJ, Paltiel HJ, et al. Imaging in the diagnosis of pediatric urolithiasis. Pediatr Radiol. 2017;47:5–16.

    PubMed  Google Scholar 

  62. Morrison JC, Van Batavia JP, Darge K, Long CJ, Shukla AR, Srinivasan AK. Ultrasound guided ureteroscopy in children: Safety and success. J Pediatr Urol. 2018;14:64. e1–6.

    Google Scholar 

  63. Hong Y, Xu Q, Huang X, Zhu Z, Yang Q, An L. Ultrasound-guided minimally invasive percutaneous nephrolithotomy in the treatment of pediatric patients < 6 years: a single-center 10 years’ experience. Medicine. 2018;97:e01740.

    Google Scholar 

  64. Tasian GE, Kabarriti AE, Kalmus A, Furth SL. Kidney stone recurrence among children and adolescents. J Urol. 2017;197:246–52.

    PubMed  Google Scholar 

  65. Sas DJ. An update on the changing epidemiology and metabolic risk factors in pediatric kidney stone disease. Clin J Am Soc Nephrol. 2011;6:2062–8.

    PubMed  Google Scholar 

  66. Cambareri GM, Kovacevic L, Bayne AP, et al. National multi-institutional cooperative on urolithiasis in children: age is a significant predictor of urine abnormalities. J Pediatr Urol. 2015;11:218–23.

    PubMed  Google Scholar 

  67. Coward R, Peters C, Duffy P, et al. Epidemiology of paediatric renal stone disease in the UK. Arch Dis Child. 2003;88:962–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Heilberg IP, Goldfarb DS. Optimum nutrition for kidney stone disease. Adv Chronic Kidney Dis. 2013;20:165–74.

    PubMed  Google Scholar 

  69. Borghi L, Meschi T, Amato F, Briganti A, Novarini A, Giannini A. Urinary volume, water and recurrences in idiopathic calcium nephrolithiasis: a 5-year randomized prospective study. J Urol. 1996;155:839–43.

    PubMed  CAS  Google Scholar 

  70. Carvalho-Salemi J, Moreno L, Michael M. Medical nutrition therapy for pediatric kidney stone prevention, part one. J Renal Nutr. 2017;27:e5–8.

    Google Scholar 

  71. Carvalho-Salemi J, Moreno L, Michael M. Medical nutrition therapy for pediatric kidney stone prevention, part two. J Renal Nutr. 2017;27:e11–4.

    Google Scholar 

  72. Curhan GC, Willett WC, Rimm EB, Stampfer MJ. A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. New Engl J Med. 1993;328:833–8.

    PubMed  CAS  Google Scholar 

  73. Naseri M, Sadeghi R. Role of high-dose hydrochlorothiazide in idiopathic hypercalciuric urolithiasis of childhood. Iran J Kidney Dis. 2011;5:162–8.

    PubMed  Google Scholar 

  74. Sarica K, Erturhan S, Yurtseven C, Yaǧci F. Effect of potassium citrate therapy on stone recurrence and regrowth after extracorporeal shockwave lithotripsy in children. J Endourol. 2006;20:875–9.

    PubMed  Google Scholar 

  75. Oğuz U, Unsal A. The efficacy of medical prophylaxis in children with calcium oxalate urolithiasis after percutaneous nephrolithotomy. J Endourol. 2013;27:92–5.

    PubMed  Google Scholar 

  76. McNally MA, Pyzik PL, Rubenstein JE, Hamdy RF, Kossoff EH. Empiric use of oral potassium citrate reduces symptomatic kidney stone incidence with the ketogenic diet. Pediatrics. 2009;124:e300–4.

    PubMed  PubMed Central  Google Scholar 

Download references

Contributions

Amita Sharma will act as Guarantor for this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amita Sharma.

Ethics declarations

Conflict of Interest

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ang, A.J., Sharma, A.A. & Sharma, A. Nephrolithiasis: Approach to Diagnosis and Management. Indian J Pediatr 87, 716–725 (2020). https://doi.org/10.1007/s12098-020-03424-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12098-020-03424-7

Keywords

Navigation