Skip to main content

Advertisement

Log in

Non-Pharmacologic Management of Epilepsy

  • Review Article
  • Published:
The Indian Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Non pharmacological treatment, in addition to pharmacological treatment is indicated in patients with refractory/pharmacoresistant epilepsy and includes ketogenic diet, deep brain stimulator, vagal nerve stimulator, transcranial magnetic stimulation and epilepsy surgery. Ketogenic diet has been recommended since 1921 and has been proved to be a safe and effective treatment for intractable epilepsy. Deep brain stimulator, has been used in the treatment of movement disorders for many years and recently been tried in the treatment of pharmacoresistant epilepsy. Vagus nerve stimulator is increasingly being used as an effective seizure aborting technique in patients not responding to anticonvulsants. Transcranial magnetic stimulation is a noninvasive brain stimulation technique which is being increasingly researched for use in patients with medication-refractory seizures who are not suitable candidates for surgery. Evolution of epilepsy surgery including Vagal nerve stimulator and Deep brain stimulator, as a successful treatment modality for intractable epilepsy has been influenced over the last decade by substantial advancement in imaging and operative/device related technology. The current article reviews the indications, mechanism of action, technological aspects and efficacy of the aforementioned modalities in the treatment of intractable/pharmacoresistant epilepsy in pediatric age group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SUDEP:

Sudden Unexpected Death in Epilepsy

AED:

Antiepileptic Drugs

KD:

Ketogenic Diet

GABA:

Gamma Aminobutyric Acid

VNS:

Vagal Nerve Stimulator

DBS:

Deep Brain Stimulator

TMS:

Transcranial Magnetic Stimulation

RNS:

Responsive Cortical Neuro-Stimulator

EEG:

Electroencephalogram

SPECT:

Single –Photon Emission Computed Tomography

PET:

Positron Emission Tomography

MRI:

Magnetic Resonance Imaging

References

  1. Fisher RS, Parks-Trusz SL, Lehman C. Social issues in epilepsy. In: Shorvon S, Dreifuss F, Fish D, et al., editors. The treatment of epilepsy. Woburn: Blackwell Science; 1996.

    Google Scholar 

  2. French JA. Refractory epilepsy: clinical overview. Epilepsia. 2007;48:S3–7.

    Article  Google Scholar 

  3. Bible. The New King James Version Mark 9:14–29. Carmel, NY: Guideposts; 1982.

  4. Li B, Tong L, Jia G, Sun R. Effects of ketogenic diet on the clinical and electroencephalographic features of children with drug therapy-resistant epilepsy. Exp Ther Med. 2013;5:611–5.

    PubMed  CAS  PubMed Central  Google Scholar 

  5. Neal EG, Chaffe H, Schwartz RH, Lawson MS, Edwards N, Fitzsimmons G, et al. The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol. 2008;7:500–6.

    Article  PubMed  Google Scholar 

  6. Freeman JM. The ketogenic diet: additional information from a crossover study. J Child Neurol. 2009;24:509–12.

    Article  PubMed  Google Scholar 

  7. Noh HS, Kim YS, Lee HP, Chung KM, Kim DW, Kang SS, et al. The protective effect of a ketogenic diet on kainic acid-induced hippocampal cell death in the male ICR mice. Epilepsy Res. 2003;53:119–28.

    Article  PubMed  CAS  Google Scholar 

  8. Gasior M, Rogawski MA, Hartman AL. Neuroprotective and disease-modifying effects of the ketogenic diet. Behav Pharmacol. 2006;17:431–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Sullivan PG, Rippy NA, Dorenbos K, Concepcion RC, Agarwal AK, Rho JM. The ketogenic diet increases mitochondrial uncoupling protein levels and activity. Ann Neurol. 2004;55:576–80.

    Article  PubMed  CAS  Google Scholar 

  10. Kossoff EH, Zupec-Kania BA, Amark PE, Ballaban-Gil KR, Christina Bergqvist AG, Blackford R, et al. Optimal clinical management of children receiving the ketogenic diet: recommendations of the International Ketogenic Diet Study Group. Epilepsia. 2009;50:304–17.

    Article  PubMed  Google Scholar 

  11. Kilaru S, Bergqvist AG. Current treatment of myoclonic astatic epilepsy: clinical experience at the Children’s Hospital of Philadelphia. Epilepsia. 2007;48:1703–7.

    Article  PubMed  CAS  Google Scholar 

  12. Kossoff EH, Thiele EA, Pfeifer HH, McGrogan JR, Freeman JM. Tuberous sclerosis complex and the ketogenic diet. Epilepsia. 2005;46:1684–6.

    Article  PubMed  Google Scholar 

  13. Kossoff EH, Hedderick EF, Turner Z, Freeman JM. A case- control evaluation of the ketogenic diet versus ACTH for new- onset infantile spasms. Epilepsia. 2008;49:1504–9.

    Article  PubMed  Google Scholar 

  14. Wheless JW. The ketogenic diet. In: Swaiman KF, Ashwal S, Ferriero DM, Schor N, editors. Swaiman’s pediatric neurology-principles and practice. 5th ed. Philadelphia: Elsevier; 2012. p. 836–53.

    Chapter  Google Scholar 

  15. Takeoka M, Riviello Jr JJ, Pfeifer H, Thiele EA. Concomitant treatment with topiramate and ketogenic diet in pediatric epilepsy. Epilepsia. 2002;43:1072–5.

    Article  PubMed  CAS  Google Scholar 

  16. Wheless JW. The ketogenic diet: an effective medical therapy with side-effects. J Child Neurol. 2001;16:633.

    Article  PubMed  CAS  Google Scholar 

  17. Kossoff EH, Zupec-Kania BA, Rho JM. Ketogenic diets: an update for child neurologists. J Child Neurol. 2009;24:979–88.

    Article  PubMed  Google Scholar 

  18. Kossoff EH, McGrogan JR, Bluml RM, Pillas DJ, Rubenstein JE, Vining EP. A modified atkins diet is effective for the treatment of intractable pediatric epilepsy. Epilepsia. 2006;47:421–4.

    Article  PubMed  Google Scholar 

  19. Sharma S, Sankhyan N, Gulati S, Agarwala A. Use of the modified atkins diet for treatment of refractory childhood epilepsy: a randomized controlled trial. Epilepsia. 2013;54:481–6.

    Article  PubMed  CAS  Google Scholar 

  20. Sharma S, Sankhyan N, Gulati S, Agarwala A. Use of the modified atkins diet in infantile spasms refractory to first-line treatment. Seizure. 2012;21:45–8.

    Article  PubMed  Google Scholar 

  21. Lipsman N, Ellis M, Lozano AM. Current and future indications for deep brain stimulation in pediatric populations. Neurosurg. 2010;29:E2.

    Google Scholar 

  22. Fisher RS. Deep brain stimulation for epilepsy. Handb Clin Neurol. 2013;116:217–34.

    Article  PubMed  Google Scholar 

  23. Cukiert A, Burattini JA, Cukiert CM, Argentoni-Baldochi M, Baise-Zung C, Forster CR, et al. Centro-median stimulation yields additional seizure frequency and attention improvement in patients previously submitted to callosotomy. Seizure. 2009;18:588–92.

    Article  PubMed  Google Scholar 

  24. Chambers A, Bowen J. Electrical stimulation for drug-resistant epilepsy: an evidence-based analysis. Ont Health Technol Assess Ser. 2013;13:1–37.

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Fisher R, Salanova V, Witt T, Worth R, Henry T, Gross R, et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia. 2010;51:899–908.

    Article  PubMed  Google Scholar 

  26. Burn DJ, Tröster AI. Neuropsychiatric complications of medical and surgical therapies for parkinson’s disease. J Geriatr Psychiatry Neurol. 2004;17:172–80.

    Article  PubMed  Google Scholar 

  27. Cyberonics, Inc. VNS therapy products manuals and safety alerts: Part I - Introduction - indications, warnings, and precautions, p. 7–13. Available at: http://dynamic.cyberonics.com/manuals/

  28. Groves DA, Brown VJ. Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neurosci Biobehav Rev. 2005;29:493–500.

    Article  PubMed  Google Scholar 

  29. Rutecki P. Anatomical, physiological, and theoretical basis for the antiepileptic effect of vagus nerve stimulation. Epilepsia. 1990;31:S1–6.

    Article  PubMed  Google Scholar 

  30. Zabara J. Inhibition of experimental seizures in canines by repetitive vagal stimulation. Epilepsia. 1992;33:1005–12.

    Article  PubMed  CAS  Google Scholar 

  31. DeGiorgio C, Heck C, Bunch S, Britton J, Green P, Lancman M, et al. Vagus nerve stimulation for epilepsy : randomised comparison of three stimulation paradigm. Neurology. 2005;65:317–9.

    Article  PubMed  CAS  Google Scholar 

  32. The Vagus Nerve Stimulation Study Group. A randomized controlled trial of chronic vagus nerve stimulation for treatment of medically intractable seizures. Neurology. 1995;45:224–30.

    Article  Google Scholar 

  33. Ben-Menachem E, Manon-Espaillat R, Ristanovic R, Wilder BJ, Stefan H, Mirza W, et al. Vagus nerve stimulation for treatment of partial seizures: a controlled study of effect on seizures. First Int Vagus Nerve Stimulation Study Group. Epilepsia. 1994;35:616–26.

  34. Kabir SM, Rajaraman C, Rittey C, Zaki HS, Kemeny AA, McMullan J. Vagus nerve stimulation in children with intractable epilepsy: indications, complications and outcome. Childs Nerv Syst. 2009;25:1097–100.

    Article  PubMed  CAS  Google Scholar 

  35. Klinkenberg S, Aalbers MW, Vles JS, Cornips EM, Rijkers K, Leenen L, et al. Vagus nerve stimulation in children with intractable epilepsy: a randomized controlled trial. Dev Med Child Neurol. 2012;54:855–61.

    Article  PubMed  Google Scholar 

  36. Elliott RE, Rodgers SD, Bassani L, Morsi A, Geller EB, Carlson C, et al. Vagus nerve stimulation for children with treatment-resistant epilepsy: a consecutive series of 141 cases. J Neurosurg Pediatr. 2011;7:491–500.

    PubMed  Google Scholar 

  37. Hallbook T, Lundgren J, Stjernqvist K, Blennow G, Stromblad LG, Rosen I. Vagus nerve stimulation in 15 children with therapy resistant epilepsy; its impact on cognition, quality of life, behaviour and mood. Seizure. 2005;14:504–13.

    Article  PubMed  Google Scholar 

  38. Cascino GD, Theodore WH. Epilepsy surgery and electronic devices. Continuum (Minneap Minn). 2010;16:179–98.

    Google Scholar 

  39. Chen R, Classen J, Gerloff C, Celnik P, Wasserman EM, Hallett M, et al. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology. 1997;48:1398–403.

    Article  PubMed  CAS  Google Scholar 

  40. Joo EY, Han SJ, Chung SH, Cho JW, Seo DW, Hong SB. Antiepileptic effect of low frequency repetitive transcranial magnetic stimulation by different stimulation durations and locations. Clin Neurophysiol. 2007;118:702–8.

    Article  PubMed  Google Scholar 

  41. Sun W, Mao W, Meng X, Wang D, Qiao L, Tao W, et al. Low-frequency repetitive transcranial magnetic stimulation for the treatment of refractory partial epilepsy: a controlled clinical study. Epilepsia. 2012;53:1782–9.

    Article  PubMed  Google Scholar 

  42. Wasserman EM. Safety and side effects of transcranial magnetic stimulation and repetitive transcranial magentic stimulation. In: Pascual-Leone A, Davey NJ, Rothwell J, editors. Handbook of transcranial magnetic stimulation. London: Arnold; 2002. p. 39–49.

    Google Scholar 

  43. Schulze-Bonhage A, Scheufler K, Zentner J, Elger CE. Safety of single and repetitive focal transcranial magnetic stimuli as assessed by intracranial EEG recordings in patients with partial epilepsy. J Neurol. 1999;246:914–9.

    Article  PubMed  CAS  Google Scholar 

  44. Kwan P, Brodie MJ. Early identification of refractory epilepsy. New Engl J Med. 2000;342:314–9.

    Article  PubMed  CAS  Google Scholar 

  45. Zupanc ML, Rubio EJ, Werner R, Schwabe MJ, Mueller WM, Lew SM, et al. Epilepsy surgery outcomes: quality of life and seizure control. Pediatr Neurol. 2010;42:12–20.

    Article  PubMed  Google Scholar 

  46. Sinclair BD, Aronyk KE, Snyder TJ, Wheatley BM, McKean JD, Bhargava R, et al. Pediatric epilepsy surgery at the University of Alberta: 1988–2000. Pediatr Neurol. 2003;29:302–11.

    Article  PubMed  Google Scholar 

  47. Paolicchi JM, Jayakar P, Dean P, Yaylali I, Morrison G, Prats A, et al. Predictors of outcome in pediatric epilepsy surgery. Neurology. 2000;54:642–7.

    Article  PubMed  CAS  Google Scholar 

  48. Wiebe S, Blume WT, Girvin JP, Eliasziw M; Effectiveness and Efficiency of Surgery for Temporal Lobe Epilepsy Study Group. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med. 2001;345:311–8.

  49. Ahmad FU, Tripathi M, Padma MV, Gaikwad S, Gupta A, Bal CS, et al. Health-related quality of life using QOLIE-31: before and after epilepsy surgery a prospective study at a tertiary care center. Neurol India. 2007;55:343–8.

    Article  PubMed  Google Scholar 

  50. Bourgeois B. General concepts of medical intractability. In: Luders HO, editor. Epilepsy surgery. New York: Raven; 1991. p. 77–81.

    Google Scholar 

  51. Harvey H, Cross JH, Shinnar S, Mathern GW. ILAE pediatric epilepsy surgery survey taskforce. Defining the spectrum of international practice in pediatric epilepsy surgery patients. Epilepsia. 2008;49:146–55.

    Article  PubMed  Google Scholar 

  52. Wyllie E, Lachhwani DK, Gupta A, Chirla A, Cosmo G, Worley S, et al. Successful surgery for epilepsy due to early brain lesions despite generalized EEG findings. Neurology. 2007;69:389–97.

    Article  PubMed  CAS  Google Scholar 

  53. Korkman M, Granström ML, Kantola-Sorsa E, Gaily E, Paetau R, Liukkonen E, et al. Two-year follow-up of intelligence after pediatric epilepsy surgery. Pediatr Neurol. 2005;33:173–8.

    Article  PubMed  Google Scholar 

  54. Danielsson S, Rydenhag B, Uvebrant P, Nordborg C, Olsson I. Temporal lobe resection in children with epilepsy: neuropsychiatric status in relation to neuropathology and seizure outcome. Epilepsy Behav. 2002;3:76–8.

    Article  PubMed  Google Scholar 

  55. Meyer FB, Marsh WR, Lawa ER, Sharbrough FW. Temporal lobectomy in children with epilepsy. J Neurosurg. 1986;64:371–6.

    Article  PubMed  CAS  Google Scholar 

  56. Vigevano F, DiRocco C. Effectiveness of hemispherectomy in hemimegalencephaly with intractable seizures. Neuropediatrics. 1990;21:222–3.

    Article  PubMed  CAS  Google Scholar 

  57. Spencer SS, Schramm J, Wyler A, O’Connor M, Orbach D, Krauss G, et al. Multiple subpial transaction for intractable partial epilepsy: an international meta analysis. Epilepsia. 2002;43:141–5.

    Article  PubMed  Google Scholar 

  58. Maehara T, Shimizu H. Surgical outcome of corpus callosotomy in patients with drop attacks. Epilepsia. 2001;42:67–71.

    Article  PubMed  CAS  Google Scholar 

  59. Morell MJ; RNS System in Epilepsy Study Group. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology. 2011;77:1295–304.

    Article  Google Scholar 

  60. FDA news release: Nov. 14, 2013. Available at http://www.fda.gov/newsevents/newsroom/pressannouncements/ucm375041.htm

Download references

Conflict of Interest

None.

Source of Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Parakh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parakh, M., Katewa, V. Non-Pharmacologic Management of Epilepsy. Indian J Pediatr 81, 1073–1080 (2014). https://doi.org/10.1007/s12098-014-1519-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12098-014-1519-z

Keywords

Navigation