Skip to main content
Log in

The classification of quadratic APN functions in 7 variables and combinatorial approaches to search for APN functions

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

Almost perfect nonlinear functions possess optimal resistance to differential cryptanalysis and are widely studied. Most known APN functions are defined using their representation as a polynomial over a finite field and very little is known about combinatorial constructions of them on \(\mathbb {F}_{2}^{n}\). In this work we propose two approaches for obtaining quadratic APN functions on \(\mathbb {F}_{2}^{n}\). The first approach exploits a secondary construction idea, it considers how to obtain a quadratic APN function in n + 1 variables from a given quadratic APN function in n variables using special restrictions on the new terms. The second approach is searching for quadratic APN functions that have a matrix representation partially filled with the standard basis vectors in a cyclic manner. This approach allows us to find a new APN function in 7 variables. We prove that the updated list of quadratic APN functions in dimension 7 is complete up to CCZ-equivalence. Also, we observe that the quadratic parts of some APN functions have a low differential uniformity. This observation allows us to introduce a new subclass of APN functions, the so-called stacked APN functions. These are APN functions of algebraic degree d such that eliminating monomials of degrees k + 1,…, d for any k < d results in APN functions of algebraic degree k. We provide cubic examples of stacked APN functions for dimensions up to 6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agievich, S., Gorodilova, A., Kolomeec, N., Nikova, S., Preneel, B., Rijmen, V., Shushuev, G., Tokareva, N., Vitkup, V.: Problems, solutions and experience of the first international student’s Olympiad in cryptography. Prikl. Diskretnaya Matematika 3(29), 5–28 (2015)

    MATH  Google Scholar 

  2. Beierle, C., Leander, G.: New instances of quadratic APN functions. arXiv:abs/2009.07204 (2020)

  3. Beth, T., Ding, C.: On almost perfect nonlinear permutations. Advances in Cryptology, EUROCRYPT’93, Lecture Notes Computer Science, vol. 765, pp. 65–76 (1993)

  4. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blondeau, C., Nyberg, K.: Perfect nonlinear functions and cryptography. Finite Fields Appl. 32, 120–147 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boura, C., Canteaut, A., Jean, J., Suder, V.: Two notions of differential equivalence on Sboxes. Des. Codes Cryptogr. 87, 185–202 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bracken, C., Byrne, E., Markin, N., McGuire, G.: New families of quadratic almost perfect nonlinear trinomials and multinomials. Finite Fields Appl. 14(3), 703–714 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bracken, C., Byrne, E., Markin, N., McGuire G.: A few more quadratic APN functions. Crypt. Commun. 3(1), 43–53 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brinkmann, M., Leander, G.: On the classification of APN functions up to dimension five. Des. Codes Cryptogr. 49(1–3), 273–288 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Browning, K.A., Dillon, J.F., McQuistan, M.T., Wolfe, A.J.: An APN permutation in dimension six. Post-proceedings of the 9-th International Conference on Finite Fields and Their Applications Fq’09, Contemporary Math., AMS, vol. 518, pp. 33–42 (2010)

  11. Budaghyan, L.: Construction and analysis of cryptographic functions. Springer International Publishing, VIII 168 pp (2014)

  12. Budaghyan, L., Carlet, C., Helleseth, T., Li, N., Sun, B.: On upper bounds for algebraic degrees of APN functions. IEEE Trans. Inf. Theory 64(6), 4399–4411 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Budaghyan, L., Carlet, C., Helleseth, T., Kaleyski, N.: On the distance between APN functions. IEEE Trans. Inf. Theory 66(9), 5742–5753 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Budaghyan, L., Carlet, C., Leander, G.: Constructing new APN Functions from known ones. Finite Fields Appl. 15(2), 150–159 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Budaghyan, L., Carlet, C., Leander, G.: On a construction of quadratic APN functions. 2009 IEEE Information Theory Workshop, Taormina, pp. 374–378 (2009)

  16. Budaghyan, L., Carlet, C., Leander, G.: Two classes of quadratic APN binomials inequivalent to power functions. IEEE Trans. Inform. Theory 54(9), 4218–4229 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Budaghyan, L., Calderini, M., Carlet, C., Coulter, R.S., Villa, I.: Constructing APN functions through isotopic shifts. IEEE Trans. Inf. Theory 66(8), 5299–5309 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Budaghyan, L., Carlet, C., Pott, A.: New classes of almost bent and almost perfect nonlinear polynomials. IEEE Trans. Inf. Theory 52(3), 1141–1152 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Budaghyan, L., Carlet, C.: Classes of quadratic APN trinomials and hexanomials and related structures. IEEE Trans. Inf. Theory 54(5), 2354–2357 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Budaghyan, L., Helleseth, T., Kaleyski, N.: A new family of APN quadrinomials. IEEE Trans. Inform. Theory 66(11), 7081–7087 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Calderini, M.: On the EA-classes of known APN functions in small dimensions. Cryptogr. Commun. 12, 821–840 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Calderini, M., Budaghyan, L., Carlet, C.: On known constructions of APN and AB functions and their relation to each other. Cryptology ePrint Archive, Report 2020/1444

  23. Canteaut, A., Charpin, P., Dobbertin, H.: Binary m-sequences with three-valued crosscorrelation: a proof of Welch conjecture. IEEE Trans. Inf. Theory. 46 (1), 4–8 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Carlet, C.: Open questions on nonlinearity and on APN functions. Arithmetic of Finite Fields. WAIFI 2014. Lecture Notes Computer Science, vol. 9061, pp. 83–107 (2015)

  25. Carlet, C.: Boolean Functions for Cryptography and Coding Theory. Cambridge Univ. Press, 562 pages (2021)

  26. Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations suitable for DES-like cryptosystems. Des. Codes Cryptogr. 15, 125–156 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dobbertin, H.: Almost perfect nonlinear power functions on GF(2n): the Welch case. IEEE Trans. Inf. Theory. 45(4), 1271–1275 (1999)

    Article  MATH  Google Scholar 

  28. Dobbertin, H.: Almost perfect nonlinear functions over GFGF(2n): the Niho case. Inform. Comput. 151, 57–72 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Dobbertin, H.: Almost perfect nonlinear power functions over GF(2n): a new case for n divisible by 5. Proceedings of Finite Fields and Applications FQ5, pp. 113–121 (2000)

  30. Edel, Y., Pott, A.: A new almost perfect nonlinear function which is not quadratic. Adv. Math. Commun. 3(1), 59–81 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Edel, Y., Kyureghyan, G., Pott, A.: A new APN function which is not equivalent to a power mapping. IEEE Trans. Inf. Theory 52(2), 744–747 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gold, R.: Maximal recursive sequences with 3-valued recursive crosscorrelation functions. IEEE Trans. Inform. Theory 14, 154–156 (1968)

    Article  MATH  Google Scholar 

  33. Göloğlu, F.: Gold-hybrid APN functions. Preprint (2020)

  34. Gorodilova, A.A.: Characterization of almost perfect nonlinear functions in terms of subfunctions. Diskr. Mat. 27(3), 3–16; Discrete Math. Appl. 26(4), 193–202 (2016) (2015)

  35. Gorodilova, A.: On the differential equivalence of APN functions. Cryptogr. Commun. 11, 793–813 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Glukhov, M.M.: On the approximation of discrete functions by linear functions. Matematicheskie Vopr. Kriptografii 7(4), 29–50 (2016). (in Russian)

    MathSciNet  MATH  Google Scholar 

  37. Hollmann, H., Xiang, Q.: A proof of the Welch and Niho conjectures on crosscorrelations of binary m-sequences. Finite Fields Appl. 7, 253–286 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Idrisova, V.: On an algorithm generating 2-to-1 APN functions and its applications to “the big APN problem”. Cryptogr. Commun. 11, 21–39 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Janwa, H., Wilson, R.: Hyperplane sections of Fermat varieties in P3 in char. 2 and some applications to cyclic codes. Proceedings of AAECC-10, Lecture Notes in Computer Science, vol. 673, Berlin, Springer-Verlag, pp. 180–194 (1993)

  40. Kaleyski, N.S.: Changing APN functions at two points. Cryptogr. Commun. 11, 1165–1184 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kalgin, K., Idrisova, V.: On secondary and cyclic approaches to search for quadratic APN functions. Proceedings of the 11th international conference on sequences and their applications — SETA-2020 (Saint-Petersburg, Russia, September 22–25) (2020)

  42. Kasami, T.: The weight enumerators for several classes of subcodes of the second order binary Reed-Muller codes. Inform. and Control. 18, 369–394 (1971)

    Article  MATH  Google Scholar 

  43. Kaspers, C., Zhou, Y.: The number of almost perfect nonlinear functions grows exponentially. J. Cryptol. 34(4) published online (2021)

  44. Langevin, P., Saygi, Z., Saygi, E.: Classification of APN cubics in dimension 6 over GF(2): http://langevin.univ-tln.fr/project/apn-6/apn-6.html

  45. Nyberg, K.: Differentially uniform mappings for cryptography. Advances in Cryptography, EUROCRYPT’93, Lecture Notes in Computer Science vol. 765, pp. 55–64 (1994)

  46. Pott, A.: Almost perfect and planar functions. Des. Codes Crypt. 78(1), 141–195 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. Taniguchi, H.: On some quadratic APN functions. Des. Codes Crypt. 87, 1973–1983 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  48. Tuzhilin, M.E.: APN functions. Prikl. Diskretnaya Matematika 3, 14–20 (2009). (in Russian)

    Article  MATH  Google Scholar 

  49. Yoshiara, S.: Equivalences of quadratic APN functions. J. Algebraic Comb. 35, 461–475 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. Yu, Y., Wang, M., Li, Y.: A matrix approach for constructing quadratic APN functions. Des. Codes Cryptogr. 73, 587–600 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. Yu, Y., Kaleyski, N.S., Budaghyan, L., Li, Y.: Classification of quadratic APN functions with coefficients in GF(2) for dimensions up to 9. Finite Fields Appl. 68, 101–733 (2020)

    Article  MATH  Google Scholar 

  52. Yu, Y., Perrin, L.: Constructing more quadratic APN functions with the QAM method. Cryptology ePrint Archive Report 2021/574 (2021)

  53. Zhou, Y., Pott, A.: A new family of semifields with 2 parameters. Adv. Math. 234, 43–60 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We sincerely thank the anonymous reviewers for their careful reading of this manuscript and suggesting substantial improvements. We would like to cordially thank Natalia Tokareva for her valuable remarks. We are deeply thankful to Christof Beierle for pointing out some inaccuracies. We are much indebted to the reviewers of the SETA-2020 conference for their helpful reviews. We are grateful to Anastasia Gorodilova and Nikolay Kolomeec for their useful observations and fruitful discussions. The work is supported by the Mathematical Center in Akademgorodok under agreement No. 075-15-2022-281 with the Ministry of Science and Higher Education of the Russian Federation. We are grateful to the Supercomputing Center of the Novosibirsk State University for the provided computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Kalgin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Sequences and Their Applications III

Guest Editors: Chunlei Li, Tor Helleseth and Zhengchun Zhou

The work is supported by Mathematical Center in Akademgorodok under agreement No. 075-15-2022-281 with the Ministry of Science and Higher Education of the Russian Federation. We are grateful to the Supercomputing Center of the Novosibirsk State University for provided computational resources.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalgin, K., Idrisova, V. The classification of quadratic APN functions in 7 variables and combinatorial approaches to search for APN functions. Cryptogr. Commun. 15, 239–256 (2023). https://doi.org/10.1007/s12095-022-00588-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-022-00588-1

Keywords

Navigation