Skip to main content
Log in

Machine learning-driven prediction of brain metastasis in lung adenocarcinoma using miRNA profile and target gene pathway analysis of an mRNA dataset

  • RESEARCH ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Brain metastasis (BM) is common in lung adenocarcinoma (LUAD) and has a poor prognosis, necessitating predictive biomarkers. MicroRNAs (MiRNAs) promote cancer cell growth, infiltration, and metastasis. However, the relationship between the miRNA expression profiles and BM occurrence in patients with LUAD remains unclear.

Methods

We conducted an analysis to identify miRNAs in tissue samples that exhibited different expression levels between patients with and without BM. Using a machine learning approach, we confirmed whether the miRNA profile could be a predictive tool for BM. We performed pathway analysis of miRNA target genes using a matched mRNA dataset.

Results

We selected 25 miRNAs that consistently exhibited differential expression between the two groups of 32 samples. The 25-miRNA profile demonstrated a strong predictive potential for BM in both Group 1 and Group 2 and the entire dataset (area under the curve [AUC] = 0.918, accuracy = 0.875 in Group 1; AUC = 0.867, accuracy = 0.781 in Group 2; and AUC = 0.908, accuracy = 0.875 in the entire group). Patients predicted to have BM, based on the 25-miRNA profile, had lower survival rates. Target gene analysis of miRNAs suggested that BM could be induced through the ErbB signaling pathway, proteoglycans in cancer, and the focal adhesion pathway. Furthermore, patients predicted to have BM based on the 25-miRNA profile exhibited higher expression of the epithelial-mesenchymal transition signature, TWIST, and vimentin than those not predicted to have BM. Specifically, there was a correlation between EGFR mRNA levels and BM.

Conclusions

This 25-miRNA profile may serve as a biomarker for predicting BM in patients with LUAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics. CA Cancer J Clin. 2023;73:17–48. https://doi.org/10.3322/caac.21763.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics. Cancer J Clin. 2019;69:7–34.

    Article  Google Scholar 

  3. Sørensen J, Hansen HH, Hansen M, Dombernowsky P. Brain metastases in adenocarcinoma of the lung: frequency, risk groups, and prognosis. J Clin Oncol. 1988;6:1474–80.

    Article  PubMed  Google Scholar 

  4. Wang H, Wang Z, Zhang G, Zhang M, Zhang X, Li H, et al. Driver genes as predictive indicators of brain metastasis in patients with advanced NSCLC: EGFR, ALK, and RET gene mutations. Cancer Med. 2020;9:487–95. https://doi.org/10.1002/cam4.2706.

    Article  CAS  PubMed  Google Scholar 

  5. Ge M, Zhuang Y, Zhou X, Huang R, Liang X, Zhan Q. High probability and frequency of EGFR mutations in non-small cell lung cancer with brain metastases. J Neurooncol. 2017;135:413–8. https://doi.org/10.1007/s11060-017-2590-x.

    Article  CAS  PubMed  Google Scholar 

  6. Besse B, Le Moulec S, Mazières J, Senellart H, Barlesi F, Chouaid C, et al. Bevacizumab in patients with nonsquamous non-small cell lung cancer and asymptomatic, untreated brain metastases (BRAIN): a nonrandomized, phase II study. Clin Cancer Res Off J Am Assoc Cancer Res. 2015;21:1896–903. https://doi.org/10.1158/1078-0432.Ccr-14-2082.

    Article  CAS  Google Scholar 

  7. Koh YW, Han JH, Haam S, Lee HW. An immune-related gene expression signature predicts brain metastasis in lung adenocarcinoma patients after surgery: gene expression profile and immunohistochemical analyses. Transl Lung Cancer Res. 2021;10:802–14. https://doi.org/10.21037/tlcr-20-1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bartel DP. Metazoan MicroRNAs. Cell. 2018;173:20–51. https://doi.org/10.1016/j.cell.2018.03.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Qureshi A, Thakur N, Monga I, Thakur A, Kumar M. VIRmiRNA: a comprehensive resource for experimentally validated viral miRNAs and their targets. Database (Oxford). 2014;2014:bau103. https://doi.org/10.1093/database/bau103.

    Article  CAS  PubMed  Google Scholar 

  10. Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 2016;1:15004. https://doi.org/10.1038/sigtrans.2015.4.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kim J, Yao F, Xiao Z, Sun Y, Ma L. MicroRNAs and metastasis: small RNAs play big roles. Cancer Metastasis Rev. 2018;37:5–15. https://doi.org/10.1007/s10555-017-9712-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sun G, Ding X, Bi N, Wu L, Wang J, Zhang W, et al. MiR-423-5p in brain metastasis: potential role in diagnostics and molecular biology. Cell Death Dis. 2018;9:936. https://doi.org/10.1038/s41419-018-0955-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao S, Yu J, Wang L. Machine learning based prediction of brain metastasis of patients with IIIA-N2 lung adenocarcinoma by a three-miRNA signature. Transl Oncol. 2018;11:157–67. https://doi.org/10.1016/j.tranon.2017.12.002.

    Article  PubMed  Google Scholar 

  14. Haam S, Han JH, Lee HW, Koh YW. Tumor nonimmune-microenvironment-related gene expression signature predicts brain metastasis in lung adenocarcinoma patients after surgery: a machine learning approach using gene expression profiling. Cancers (Basel). 2021;13:4468. https://doi.org/10.3390/cancers13174468.

    Article  CAS  PubMed  Google Scholar 

  15. Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, Dunaway DL, et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol. 2008;26:317–25. https://doi.org/10.1038/nbt1385.

    Article  CAS  PubMed  Google Scholar 

  16. Sticht C, De La Torre C, Parveen A, Gretz N. miRWalk: an online resource for prediction of microRNA binding sites. PLoS ONE. 2018;13:e0206239. https://doi.org/10.1371/journal.pone.0206239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang HY, Lin YC, Cui S, Huang Y, Tang Y, Xu J, et al. miRTarBase update 2022: an informative resource for experimentally validated miRNA-target interactions. Nucleic Acids Res. 2022;50:D222–30. https://doi.org/10.1093/nar/gkab1079.

    Article  CAS  PubMed  Google Scholar 

  18. Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50:W216–21. https://doi.org/10.1093/nar/gkac194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417–25. https://doi.org/10.1016/j.cels.2015.12.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McCarty KS Jr, Szabo E, Flowers JL, Cox EB, Leight GS, Miller L, et al. Use of a monoclonal anti-estrogen receptor antibody in the immunohistochemical evaluation of human tumors. Can Res. 1986;46:4244s-s4248.

    Google Scholar 

  21. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (Methodol). 1995;57:289–300.

    Google Scholar 

  22. Demšar J, Curk T, Erjavec A, Gorup Č, Hočevar T, Milutinovič M, Zupan B. Orange: data mining toolbox in python. J Mach Learn Res. 2013;14:2349–53.

    Google Scholar 

  23. Shin DY, Na II, Kim CH, Park S, Baek H, Yang SH. EGFR mutation and brain metastasis in pulmonary adenocarcinomas. J Thorac Oncol. 2014;9:195–9. https://doi.org/10.1097/jto.0000000000000069.

    Article  CAS  PubMed  Google Scholar 

  24. Li L, Luo S, Lin H, Yang H, Chen H, Liao Z, et al. Correlation between EGFR mutation status and the incidence of brain metastases in patients with non-small cell lung cancer. J Thorac Dis. 2017;9:2510–20.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ahrens TD, Bang-Christensen SR, Jørgensen AM, Løppke C, Spliid CB, Sand NT, et al. The role of proteoglycans in cancer metastasis and circulating tumor cell analysis. Front Cell Dev Biol. 2020;8:749. https://doi.org/10.3389/fcell.2020.00749.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Maziveyi M, Alahari SK. Cell matrix adhesions in cancer: the proteins that form the glue. Oncotarget. 2017;8:48471–87. https://doi.org/10.18632/oncotarget.17265.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Avizienyte E, Frame MC. Src and FAK signalling controls adhesion fate and the epithelial-to-mesenchymal transition. Curr Opin Cell Biol. 2005;17:542–7. https://doi.org/10.1016/j.ceb.2005.08.007.

    Article  CAS  PubMed  Google Scholar 

  28. Chen J, Yang H, Zhao C, Lin T, Liu D, Hong W, et al. Mutational signatures of synchronous and metachronous brain metastases from lung adenocarcinoma. Exp Hematol Oncol. 2023;12:54. https://doi.org/10.1186/s40164-023-00418-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mohan A, Ansari A, Masroor M, Saxena A, Pandey RM, Upadhyay A, et al. Measurement of serum EGFR mRNA expression is a reliable predictor of treatment response and survival outcomes in Non- small cell lung cancer. Asian Pac J Cancer Prev. 2020;21:3153–63. https://doi.org/10.31557/apjcp.2020.21.11.3153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun G, Liu B, He J, Zhao X, Li B. Expression of EGFR is closely related to reduced 3-year survival rate in Chinese female NSCLC. Med Sci Monit. 2015;21:2225–31. https://doi.org/10.12659/msm.894786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu Z, Han G, Cao Y, Wang Y, Gong H. Calcium/calmodulin-dependent protein kinase II enhances metastasis of human gastric cancer by upregulating nuclear factor-κB and Akt-mediated matrix metalloproteinase-9 production. Mol Med Rep. 2014;10:2459–64. https://doi.org/10.3892/mmr.2014.2525.

    Article  CAS  PubMed  Google Scholar 

  32. Yu G, Cheng CJ, Lin SC, Lee YC, Frigo DE, Yu-Lee LY, et al. Organelle-derived acetyl-CoA promotes prostate cancer cell survival, migration, and metastasis via activation of calmodulin kinase II. Cancer Res. 2018;78:2490–502. https://doi.org/10.1158/0008-5472.Can-17-2392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Daft PG, Yuan K, Warram JM, Klein MJ, Siegal GP, Zayzafoon M. Alpha-CaMKII plays a critical role in determining the aggressive behavior of human osteosarcoma. Mol Cancer Res. 2013;11:349–59. https://doi.org/10.1158/1541-7786.Mcr-12-0572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang AR, Khullar S, Brown J, Baschnagel A, Buehler D, Kendziorski C, et al. Remodeling the extracellular matrix environment enables the dissemination of primary tumor cells through a chemokine gradient to establish brain metastasis in non-small cell lung cancer adenocarcinoma. Can Res. 2022;82:3859.

    Article  Google Scholar 

  35. Zhang L, Wang L, Yang H, Li C, Fang C. Identification of potential genes related to breast cancer brain metastasis in breast cancer patients. Biosci Rep. 2021;41:BSR20211615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Soike MH, Ruiz J, McTyre E, O’Neill S, Qasem S, Furdui CM, et al. Discovery of a predictive protein biomarker for leptomeningeal disease after craniotomy and radiation. J Clin. 2018;36:2068. https://doi.org/10.1200/JCO.2018.36.15_suppl.2068.

    Article  Google Scholar 

  37. Chen X, Li X, Hu X, Jiang F, Shen Y, Xu R, et al. LUM expression and its prognostic significance in gastric cancer. Front Oncol. 2020;10:605. https://doi.org/10.3389/fonc.2020.00605.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hsiao K-C, Chu P-Y, Chang G-C, Liu K-J. Elevated expression of lumican in lung cancer cells promotes bone metastasis through an autocrine regulatory mechanism. Cancers. 2020;12:233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen M, Li H, Xu X, Bao X, Xue L, Ai X, et al. Identification of RAC1 in promoting brain metastasis of lung adenocarcinoma using single-cell transcriptome sequencing. Cell Death Dis. 2023;14:330. https://doi.org/10.1038/s41419-023-05823-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brlek P, Bukovac A, Kafka A, Pećina-Šlaus N. TWIST1 upregulation affects E-cadherin expression in brain metastases. Clin Transl Oncol. 2021;23:1085–95. https://doi.org/10.1007/s12094-020-02496-3.

    Article  CAS  PubMed  Google Scholar 

  41. Lin Y, Lin E, Li Y, Chen X, Chen M, Huang J, et al. Thrombospondin 2 is a functional predictive and prognostic biomarker for triple-negative breast cancer patients with neoadjuvant chemotherapy. Pathol Oncol Res. 2022;28:1610559. https://doi.org/10.3389/pore.2022.1610559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Papadakos KS, Darlix A, Jacot W, Blom AM. High levels of cartilage oligomeric matrix protein in the serum of breast cancer patients can serve as an independent prognostic marker. Front Oncol. 2019;9:1141. https://doi.org/10.3389/fonc.2019.01141.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Brasó-Maristany F, Paré L, Chic N, Martínez-Sáez O, Pascual T, Mallafré-Larrosa M, et al. Gene expression profiles of breast cancer metastasis according to organ site. Mol Oncol. 2022;16:69–87. https://doi.org/10.1002/1878-0261.13021.

    Article  CAS  PubMed  Google Scholar 

  44. Li N, Liu M, Cao X, Li W, Li Y, Zhao Z. Identification of differentially expressed genes using microarray analysis and COL6A1 induction of bone metastasis in non-small cell lung cancer. Oncol Lett. 2021;22:693. https://doi.org/10.3892/ol.2021.12954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Qin SY, Li B, Chen M, Qin MQ, Liu JM, Lv QL. MiR-32-5p promoted epithelial-to-mesenchymal transition of oral squamous cell carcinoma cells via regulating the KLF2/CXCR4 pathway. Kaohsiung J Med Sci. 2022;38:120–8. https://doi.org/10.1002/kjm2.12450.

    Article  CAS  PubMed  Google Scholar 

  46. DiVincenzo MJ, Barricklow Z, Schwarz E, Moufawad M, Howard JH, Yu L, et al. Loss of miR-1469 expression mediates melanoma cell migration and invasion. PLoS ONE. 2021;16:e0256629. https://doi.org/10.1371/journal.pone.0256629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zheng Y, Zheng Y, Lei W, Xiang L, Chen M. miR-1307-3p overexpression inhibits cell proliferation and promotes cell apoptosis by targeting ISM1 in colon cancer. Mol Cell Probes. 2019;48:101445. https://doi.org/10.1016/j.mcp.2019.101445.

    Article  CAS  PubMed  Google Scholar 

  48. Li X, Zhu M, Zhao G, Zhou A, Min L, Liu S, et al. MiR-1298-5p level downregulation induced by Helicobacter pylori infection inhibits autophagy and promotes gastric cancer development by targeting MAP2K6. Cell Signal. 2022;93: 110286. https://doi.org/10.1016/j.cellsig.2022.110286.

    Article  CAS  PubMed  Google Scholar 

  49. Quan Y, Song Q, Wang J, Zhao L, Lv J, Gong S. MiR-1202 functions as a tumor suppressor in glioma cells by targeting Rab1A. Tumour Biol. 2017;39:1010428317697565. https://doi.org/10.1177/1010428317697565.

    Article  CAS  PubMed  Google Scholar 

  50. Xue Y, Wu T, Sheng Y, Zhong Y, Hu B, Bao C. MicroRNA-1252-5p, regulated by Myb, inhibits invasion and epithelial-mesenchymal transition of pancreatic cancer cells by targeting NEDD9. Aging (Albany NY). 2021;13:18924–45. https://doi.org/10.18632/aging.203344.

    Article  CAS  PubMed  Google Scholar 

  51. Hao H, Wang B, Yang L, Sang Y, Xu W, Liu W, et al. miRNA-186-5p inhibits migration, invasion and proliferation of breast cancer cells by targeting SBEM. Aging (Albany NY). 2023;15:6993–7007. https://doi.org/10.18632/aging.204887.

    Article  CAS  PubMed  Google Scholar 

  52. Lu Y, Zhang X, Zhang H, Zhu Z. Prognosis and biological function of miR-3195 in non-small cell lung cancer. Cancer Manag Res. 2022;14:169–76. https://doi.org/10.2147/cmar.S345618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang Y, Li H, He Z, Xie D, Ni J, Lin X. MicroRNA-488-3p inhibits proliferation and induces apoptosis by targeting ZBTB2 in esophageal squamous cell carcinoma. J Cell Biochem. 2019;120:18702–13. https://doi.org/10.1002/jcb.29178.

    Article  CAS  PubMed  Google Scholar 

  54. Lv F, Xue Q. MiR-614 inhibited lung cancer cell invasion and proliferation via targeting PSA. Zhongguo Fei Ai Za Zhi. 2014;17:715–21. https://doi.org/10.3779/j.issn.1009-3419.2014.10.02.

    Article  PubMed  Google Scholar 

  55. Wang X, Li C, Yao W, Tian Z, Liu Z, Ge H. MicroRNA-761 suppresses tumor progression in osteosarcoma via negatively regulating ALDH1B1. Life Sci. 2020;262: 118544. https://doi.org/10.1016/j.lfs.2020.118544.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang H, Yuan N, Che H, Cheng X. MiR-188-5p inhibits cell proliferation and migration in ovarian cancer via competing for CCND2 with ELAVL1. Cell Mol Biol (Noisy-le-grand). 2023;69:69–74.

    Article  PubMed  Google Scholar 

  57. Xu X, Zhang F, Chen X, Ying Q. MicroRNA-518b functions as a tumor suppressor in glioblastoma by targeting PDGFRB. Mol Med Rep. 2017;16:5326–32. https://doi.org/10.3892/mmr.2017.7298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu J, Li SM. MiR-484 suppressed proliferation, migration, invasion and induced apoptosis of gastric cancer via targeting CCL-18. Int J Exp Pathol. 2020;101:203–14. https://doi.org/10.1111/iep.12366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lu J, Zhou Y, Zheng X, Chen L, Tuo X, Chen H, et al. 20(S)-Rg3 upregulates FDFT1 via reducing miR-4425 to inhibit ovarian cancer progression. Arch Biochem Biophys. 2020;693: 108569. https://doi.org/10.1016/j.abb.2020.108569.

    Article  CAS  PubMed  Google Scholar 

  60. Wang Y, Yang J, Chen P, Song Y, An W, Zhang H, et al. MicroRNA-320a inhibits invasion and metastasis in osteosarcoma by targeting cytoplasmic polyadenylation element-binding protein 1. Cancer Med. 2020;9:2833–45. https://doi.org/10.1002/cam4.2919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hong J, Liu J, Zhang Y, Ding L, Ye Q. MiR-3180 inhibits hepatocellular carcinoma growth and metastasis by targeting lipid synthesis and uptake. Cancer Cell Int. 2023;23:66. https://doi.org/10.1186/s12935-023-02915-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li C, Jin W, Zhang D, Tian S. Clinical significance of microRNA-1180-3p for colorectal cancer and effect of its alteration on cell function. Bioengineered. 2021;12:10491–500. https://doi.org/10.1080/21655979.2021.1997694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tang C, Wang X, Ji C, Zheng W, Yu Y, Deng X, et al. The role of miR-640: a potential suppressor in breast cancer via Wnt7b/β-catenin signaling pathway. Front Oncol. 2021;11: 645682. https://doi.org/10.3389/fonc.2021.645682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None

Funding

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT (RS-2023-00249100 for Young Wha Koh).

Author information

Authors and Affiliations

Authors

Contributions

Koh YW conceived and designed the analysis. Han JH, Hamm S, Lee HW, Koh YW collected the data. Han JH, Hamm S, Lee HW, Koh YW contributed data or analysis tools. Koh YW performed the analysis. Han JH, Hamm S, Lee HW, Koh YW wrote the paper.

Corresponding author

Correspondence to Young Wha Koh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Institutional Review Board of the Ajou University School of Medicine (AJOUIRB-KSP-2017-357, 2017-11-02).

Informed consent

Informed consent was waived due to the retrospective study design.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koh, Y.W., Han, JH., Haam, S. et al. Machine learning-driven prediction of brain metastasis in lung adenocarcinoma using miRNA profile and target gene pathway analysis of an mRNA dataset. Clin Transl Oncol (2024). https://doi.org/10.1007/s12094-024-03474-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12094-024-03474-9

Keywords

Navigation