Skip to main content

Advertisement

Log in

DC vaccine enhances CAR-T cell antitumor activity by overcoming T cell exhaustion and promoting T cell infiltration in solid tumors

  • RESEARCH ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Objective

Great success has been achieved in CAR-T cell immunotherapy in the treatment of hematological tumors. However, it is particularly difficult in solid tumors, because CAR-T is difficult to enter interior and exert long-term stable immune effects. Dendritic cells (DCs) can not only present tumor antigens but also promote the infiltration of T cells. Therefore, CAR-T cells with the help of DC vaccines are a reliable approach to treat solid tumors.

Methods

To test whether DC vaccine could promote CAR-T cell therapy in solid tumors, DC vaccine was co-cultured with MSLN CAR-T cells. The in vitro effects of DC vaccine on CAR-T were assessed by measuring cell proliferation, cell differentiation, and cytokine secretion. Effects of DC vaccine on CAR-T were evaluated using mice with subcutaneous tumors in vivo. The infiltration of CAR-T was analyzed using immunofluorescence. The persistence of CAR-T in mouse blood was analyzed using real-time quantitative PCR.

Results

The results showed that DC vaccine significantly enhanced the proliferation potential of MSLN CAR-T cells in vitro. DC vaccines not only promoted the infiltration of CAR-T cells, but also significantly improved the persistence of CAR-T in solid tumors in vivo.

Conclusion

In conclusion, this study has demonstrated that DC vaccine can promote CAR-T therapy in solid tumors, which provides the possibility of widespread clinical application of CAR-T cells in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors state that all data is available from the text or corresponding authors.

References

  1. Zhang C, Liu J, Zhong JF, et al. Engineering CAR-T cells. Biomak Res. 2017. https://doi.org/10.1186/s40364-017-0102-y.

    Article  Google Scholar 

  2. Cao J, Wang G, Cheng H, et al. Potent anti-leukemia activities of humanized CD19-targeted Chimeric antigen receptor T (CAR-T) cells in patients with relapsed/refractory acute lymphoblastic leukemia [J]. Am J Hematol. 2018;93(7):851–8.

    Article  CAS  PubMed  Google Scholar 

  3. Wei G, Ding L, Wang J, et al. Advances of CD19-directed chimeric antigen receptor-modified T cells in refractory/relapsed acute lymphoblastic leukemia. Exp Hematol Oncol. 2017. https://doi.org/10.1186/s40164-017-0070-9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Han D, Xu Z, Zhuang Y, et al. Current progress in CAR-T cell therapy for hematological malignancies [J]. J Cancer. 2021;12(2):326–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Newick K, O’Brien S, Moon E, et al. CAR T Cell Therapy for Solid Tumors [M]//CASKEY C T. Annu Rev Med. 2017;68:139–52.

    Article  CAS  PubMed  Google Scholar 

  6. Dana H, Chalbatani GM, Jalali SA, et al. CAR-T cells: Early successes in blood cancer and challenges in solid tumors [J]. Acta Pharmaceutica Sinica B. 2021;11(5):1129–47.

    Article  CAS  PubMed  Google Scholar 

  7. Ma S, Li X, Wang X, et al. Current progress in CAR-T Cell therapy for solid tumors [J]. Int J Biol Sci. 2019;15(12):2548–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021. https://doi.org/10.1038/s41408-021-00459-7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bol KF, Schreibelt G, Rabold K, et al. The clinical application of cancer immunotherapy based on naturally circulating dendritic cells [J]. J Immunother Cancer. 2019. https://doi.org/10.1186/s40425-019-0580-.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jhunjhunwala S, Hammer C, Delamarre L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion [J]. Nat Rev Cancer. 2021;21(5):298–312.

    Article  CAS  PubMed  Google Scholar 

  11. Macri C, Pang ES, Patton T, et al. Dendritic cell subsets [J]. Semin Cell Dev Biol. 2018;84:11–21.

    Article  CAS  PubMed  Google Scholar 

  12. Randolph GJ. Dendritic cells: The first step [J]. J Exp Med. 2021. https://doi.org/10.1084/jem.20202077.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Balan S, Saxena M, Bhardwaj N. Dendritic cell subsets and locations [M]//LHUILLIER C. GALLUZZI L. Immunobiology of Dendritic Cells: Pt A; 2019. p. 1–68.

    Google Scholar 

  14. Osada T, Clay TM, Woo CY, et al. Dendritic cell-based immunotherapy. Int Rev Immunol. 2006;25(5–6):377–413.

    Article  CAS  PubMed  Google Scholar 

  15. Patente TA, Pinho MP, Oliveira AA, et al. Human dendritic cells: their heterogeneity and clinical application potential in cancer immunotherapy. Front Immun. 2019. https://doi.org/10.3389/fimmu.2018.03176.

    Article  Google Scholar 

  16. Fu C, Jiang A. Dendritic cells and CD8 T cell immunity in tumor microenvironment. Front Immunol. 2018. https://doi.org/10.3389/fimmu.2018.03059.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Spranger S, Dai D, Horton B, et al. Tumor-Residing Batf3 dendritic cells are required for effector t cell trafficking and adoptive t cell therapy. Cancer Cell. 2017. https://doi.org/10.1016/j.ccell.2017.04.003.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gardner A, DE MINGO PULIDO A, RUFFELL B. Dendritic Cells and Their Role in Immunotherapy. Front Immunol. 2020. https://doi.org/10.3389/fimmu.2020.00924.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Filin IY, Kitaeva KV, Rutland CS, et al. Recent advances in experimental dendritic cell vaccines for cancer. Front Oncology. 2021. https://doi.org/10.3389/fonc.2021.730824.

    Article  Google Scholar 

  20. Nava S, Lisini D, Frigerio S, et al. Dendritic cells and cancer immunotherapy: the adjuvant effect. Int J Molecular Sci. 2021;22(22):12339.

    Article  CAS  Google Scholar 

  21. Lau SP, Klaase L, Vink M, et al. Autologous dendritic cells pulsed with allogeneic tumour cell lysate induce tumour-reactive T-cell responses in patients with pancreatic cancer: a phase I study. Eur J Cancer. 2022;169:20–31.

    Article  CAS  PubMed  Google Scholar 

  22. van Driessche A, van de Velde ALR, Nijs G, et al. Clinical-grade manufacturing of autologous mature mRNA-electroporated dendritic cells and safety testing in acute myeloid leukemia patients in a phase I dose-escalation clinical trial. Cytotherapy. 2009;11(5):653–68.

    Article  PubMed  Google Scholar 

  23. Yi DH, Appel S. Current status and future perspectives of dendritic cell-based cancer immunotherapy. Scand J Immunol. 2013;78(2):167–71.

    Article  Google Scholar 

  24. Bol KF, Schreibelt G, Gerritsen WR, et al. Dendritic cell-based immunotherapy: state of the art and beyond. Clin Cancer Res. 2016;22(8):1897–906.

    Article  CAS  PubMed  Google Scholar 

  25. Chen J, Hu J, Gu L, et al. Anti-mesothelin CAR-T immunotherapy in patients with ovarian cancer. Cancer Immunol Immunother. 2022. https://doi.org/10.1007/s00262-022-03238-w.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sommermeyer D, Hudecek M, Kosasih PL, et al. Chimeric antigen receptor-modified T cells derived from defined CD8(+) and CD4(+) subsets confer superior antitumor reactivity in vivo. Leukemia. 2016;30(2):492–500.

    Article  CAS  PubMed  Google Scholar 

  27. Turtle CJ, HANAFI L-A, BERGER C, et al. CD19 CAR-T cells of defined CD4(+): CD8(+) composition in adult B cell ALL patients. J Clin Invest. 2016;126(6):2123–38.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Turtle CJ, HANAFI L-A, BERGER C, et al. Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8(+) and CD4(+) CD19-specific chimeric antigen receptor-modified T cells. Sci Translat Med. 2016. https://doi.org/10.1126/scitranslmed.aaf8621.

    Article  Google Scholar 

  29. Fisher PJ, Bulur PA, Vuk-Pavlovic S, et al. Dendritic cell microvilli: a novel membrane structure associated with the multifocal synapse and T-cell clustering. Blood. 2008;112(13):5037–45.

    Article  CAS  PubMed  Google Scholar 

  30. Kim MK, Kim J. Properties of immature and mature dendritic cells: phenotype, morphology, phagocytosis, and migration. RSC Adv. 2019;9(20):11230–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. O’Neill DW, Adams S, Bhardwaj N. Manipulating dendritic cell biology for the active immunotherapy of cancer. Blood. 2004;104(8):2235–46.

    Article  CAS  PubMed  Google Scholar 

  32. Nguyen KG, Vrabel MR, Mantooth SM, et al. Localized Interleukin-12 for Cancer Immunotherapy. Front Immunol. 2020. https://doi.org/10.3389/fimmu.2020.575597.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wu M, Zhang L, Zhang H, et al. CD19 chimeric antigen receptor-redirected T cells combined with epidermal growth factor receptor pathway substrate 8 peptide-derived dendritic cell vaccine in leukemia. Cytotherapy. 2019;21(6):659–70.

    Article  CAS  PubMed  Google Scholar 

  34. Golubovskaya V, Wu L. Different Subsets of T Cells, memory, effector functions, and CAR-T immunotherapy. Cancers. 2016;8(3):36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Martinez M, Moon EK. CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front Immunol. 2019. https://doi.org/10.3389/fimmu.2019.00128.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Delgoffe GM, Xu C, Mackall CL, et al. The role of exhaustion in CAR T cell therapy. Cancer Cell. 2021;39(7):885–8.

    Article  CAS  PubMed  Google Scholar 

  37. Perez CR, de Palma M. Engineering dendritic cell vaccines to improve cancer immunotherapy. Nat Commun. 2019. https://doi.org/10.1038/s41467-019-13368-y.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to all the partners who were helpful to the article, the guidance provided by the teacher, the platform provided by the school, and the funding from the state.

Funding

National Natural Science Foundation of China, 81872284, Miaomiao Zhang

Author information

Authors and Affiliations

Authors

Contributions

MZ, YW and LH proposed the research direction and designed the experimental scheme. MZ, YW, XC, FZ, JC, and HZ organized and analyzed the data. MZ, YW, XC, FZ, JC, HZ, JL2, and ZC2 interpreted the data; MZ, YW, and XC wrote and revised the manuscript; MZ, YW, XC, FZ, JC, HZ, JL2, ZC2, AW, YX, ZC4, YD, XY, FJ, JL1, JL5, FP, ZG, and LH provided funding and platforms for the experiments. LH supervised the study.

Corresponding author

Correspondence to Lingfeng He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All in vivo animal experiments were approved by the Committee on the Ethics of Animal Experiments of Nanjing Normal University (IRB#2020–0047).

Informed consent

For this type of study informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Wang, Y., Chen, X. et al. DC vaccine enhances CAR-T cell antitumor activity by overcoming T cell exhaustion and promoting T cell infiltration in solid tumors. Clin Transl Oncol 25, 2972–2982 (2023). https://doi.org/10.1007/s12094-023-03161-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03161-1

Keywords

Navigation