Skip to main content

Advertisement

Log in

CircRNAs: emerging factors for regulating glucose metabolism in colorectal cancer

  • REVIEW ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Colorectal cancer is a malignant disease with a high incidence and low survival rate, and the effectiveness of traditional treatments, such as surgery and radiotherapy, is very limited. CircRNAs, a kind of stable endogenous circular RNA, generally function by sponging miRNAs and binding or translating proteins. CircRNAs have been identified to play an important role in regulating the proliferation and metabolism of CRC. In recent years, many reports have indicated that by regulating the expression of glycolysis-related proteins, such as GLUT1 and HK2, or directly translating proteins, circRNAs can promote the Warburg effect in cancer cells, thereby driving CRC metabolism. Moreover, the Warburg effect increases lactate production in cancer cells and promotes acidification of the TME, which further drives cancer progression. In this review, we summarized the remarkable role of circRNAs in regulating glucose metabolism in CRC in recent years, which might be useful for finding new targets for the clinical treatment of CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Kuipers EJ, Grady WM, Lieberman D, Seufferlein T, Sung JJ, Boelens PG, et al. Colorectal cancer. Nat Rev Dis Prim. 2015. https://doi.org/10.1038/nrdp.2015.65.

    Article  PubMed  Google Scholar 

  2. Ng SC, Wong SH. Colorectal cancer screening in Asia. Br Med Bull. 2013;105:29–42.

    Article  CAS  PubMed  Google Scholar 

  3. Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet (London, England). 2019;394(10207):1467–80.

    Article  PubMed  Google Scholar 

  4. Taylor FG, Quirke P, Heald RJ, Moran B, Blomqvist L, Swift I, et al. Preoperative high-resolution magnetic resonance imaging can identify good prognosis stage I, II, and III rectal cancer best managed by surgery alone: a prospective, multicenter. Eur Study Ann Surg. 2011;253(4):711–9.

    Article  Google Scholar 

  5. Zeki SS, Graham TA, Wright NA. Stem cells and their implications for colorectal cancer. Nat Rev Gastroenterol Hepatol. 2011;8(2):90–100.

    Article  PubMed  Google Scholar 

  6. Anemone A, Consolino L, Conti L, Reineri F, Cavallo F, Aime S, et al. In vivo evaluation of tumour acidosis for assessing the early metabolic response and onset of resistance to dichloroacetate by using magnetic resonance pH imaging. Int J Oncol. 2017;51(2):498–506.

    Article  CAS  PubMed  Google Scholar 

  7. Warburg O. On the origin of cancer cells. Science (New York, NY). 1956;123(3191):309–14.

    Article  CAS  Google Scholar 

  8. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science (New York, NY). 2009;324(5930):1029–33.

    Article  CAS  Google Scholar 

  9. Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11(5):325–37.

    Article  CAS  PubMed  Google Scholar 

  10. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85–95.

    Article  CAS  PubMed  Google Scholar 

  11. Long F, Lin Z, Li L, Ma M, Lu Z, Jing L, et al. Comprehensive landscape and future perspectives of circular RNAs in colorectal cancer. Mol Cancer. 2021;20(1):26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nie H, Wang Y, Liao Z, Zhou J, Ou C. The function and mechanism of circular RNAs in gastrointestinal tumours. Cell Prolif. 2020;53(7): e12815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thorens B, Mueckler M. Glucose transporters in the 21st century. Am J Physiol Endocrinol Metab. 2010;298(2):E141–5.

    Article  CAS  PubMed  Google Scholar 

  14. Buono R, Longo VD. Starvation, stress resistance, and cancer. Trends Endocrinol Metab. 2018;29(4):271–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bathe OF, Farshidfar F. From genotype to functional phenotype: unraveling the metabolomic features of colorectal cancer. Genes. 2014;5(3):536–60.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ghashghaeinia M, Köberle M, Mrowietz U, Bernhardt I. Proliferating tumor cells mimick glucose metabolism of mature human erythrocytes. Cell cycle (Georgetown, Tex). 2019;18(12):1316–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Weinhouse S. On respiratory impairment in cancer cells. Science (New York, NY). 1956;124(3215):267–9.

    Article  CAS  PubMed  Google Scholar 

  18. Cassim S, Vučetić M, Ždralević M, Pouyssegur J. Warburg and beyond: the power of mitochondrial metabolism to collaborate or replace fermentative glycolysis in cancer. Cancers. 2020;12(5):1119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chance B, Castor LN. Some patterns of the respiratory pigments of ascites tumors of mice. Science (New York, NY). 1952;116(3008):200–2.

    Article  CAS  PubMed  Google Scholar 

  20. Chance B, Hess B. On the control of metabolism in ascites tumor cell suspensions. Ann N Y Acad Sci. 1956;63(5):1008–16.

    Article  CAS  PubMed  Google Scholar 

  21. Chance B, Hess B. Metabolic control mechanisms. III. Kinetics of oxygen utilization in ascites tumor cells. J Biol Chem. 1959;234:2416–20.

    Article  CAS  PubMed  Google Scholar 

  22. Wang G, Wang JJ, Yin PH, Xu K, Wang YZ, Shi F, et al. New strategies for targeting glucose metabolism-mediated acidosis for colorectal cancer therapy. J Cell Physiol. 2018;234(1):348–68.

    Article  PubMed  Google Scholar 

  23. Yang L, Venneti S, Nagrath D. Glutaminolysis: a hallmark of cancer metabolism. Annu Rev Biomed Eng. 2017;19:163–94.

    Article  CAS  PubMed  Google Scholar 

  24. Vaupel P, Multhoff G. Revisiting the Warburg effect: historical dogma versus current understanding. J Physiol. 2021;599(6):1745–57.

    Article  CAS  PubMed  Google Scholar 

  25. Epstein T, Xu L, Gillies RJ, Gatenby RA. Separation of metabolic supply and demand: aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane. Cancer Metab. 2014. https://doi.org/10.1186/2049-3002-2-7.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Madhukar NS, Warmoes MO, Locasale JW. Organization of enzyme concentration across the metabolic network in cancer cells. PLoS ONE. 2015;10(1): e0117131.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Carracedo A, Cantley LC, Pandolfi PP. Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer. 2013;13(4):227–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wellen KE, Thompson CB. A two-way street: reciprocal regulation of metabolism and signalling. Nat Rev Mol Cell Biol. 2012;13(4):270–6.

    Article  CAS  PubMed  Google Scholar 

  29. Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci. 2016;41(3):211–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gonçalves P, Martel F. Butyrate and colorectal cancer: the role of butyrate transport. Curr Drug Metab. 2013;14(9):994–1008.

    Article  PubMed  Google Scholar 

  31. Roediger WE. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut. 1980;21(9):793–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang J, Wang H, Liu A, Fang C, Hao J, Wang Z. Lactate dehydrogenase A negatively regulated by miRNAs promotes aerobic glycolysis and is increased in colorectal cancer. Oncotarget. 2015;6(23):19456–68.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Koukourakis MI, Giatromanolaki A, Sivridis E, Gatter KC, Trarbach T, Folprecht G, et al. Prognostic and predictive role of lactate dehydrogenase 5 expression in colorectal cancer patients treated with PTK787/ZK 222584 (vatalanib) antiangiogenic therapy. Clin Cancer Res: Off J Am Assoc Cancer Res. 2011;17(14):4892–900.

    Article  CAS  Google Scholar 

  34. Koukourakis MI, Giatromanolaki A, Simopoulos C, Polychronidis A, Sivridis E. Lactate dehydrogenase 5 (LDH5) relates to up-regulated hypoxia inducible factor pathway and metastasis in colorectal cancer. Clin Exp Metas. 2005;22(1):25–30.

    Article  CAS  Google Scholar 

  35. Izumi H, Takahashi M, Uramoto H, Nakayama Y, Oyama T, Wang KY, et al. Monocarboxylate transporters 1 and 4 are involved in the invasion activity of human lung cancer cells. Cancer Sci. 2011;102(5):1007–13.

    Article  CAS  PubMed  Google Scholar 

  36. Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA. 1976;73(11):3852–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Guo JU, Agarwal V, Guo H, Bartel DP. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 2014;15(7):409.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Enuka Y, Lauriola M, Feldman ME, Sas-Chen A, Ulitsky I, Yarden Y. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 2016;44(3):1370–83.

    Article  CAS  PubMed  Google Scholar 

  39. Huang C, Liang D, Tatomer DC, Wilusz JE. A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs. Genes Dev. 2018;32(9–10):639–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015;22(3):256–64.

    Article  PubMed  Google Scholar 

  41. Sanford TJ, Mears HV, Fajardo T, Locker N, Sweeney TR. Circularization of flavivirus genomic RNA inhibits de novo translation initiation. Nucleic Acids Res. 2019;47(18):9789–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Noto JJ, Schmidt CA, Matera AG. Engineering and expressing circular RNAs via tRNA splicing. RNA Biol. 2017;14(8):978–84.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kelly S, Greenman C, Cook PR, Papantonis A. Exon skipping is correlated with exon circularization. J Mol Biol. 2015;427(15):2414–7.

    Article  CAS  PubMed  Google Scholar 

  44. Eger N, Schoppe L, Schuster S, Laufs U, Boeckel JN. Circular RNA splicing. Adv Exp Med Biol. 2018;1087:41–52.

    Article  CAS  PubMed  Google Scholar 

  45. Cocquerelle C, Mascrez B, Hétuin D, Bailleul B. Mis-splicing yields circular RNA molecules. FASEB J: Off Publ Fed Am Soc Exp Biol. 1993;7(1):155–60.

    Article  CAS  Google Scholar 

  46. Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell. 1993;73(5):1019–30.

    Article  CAS  PubMed  Google Scholar 

  47. Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell. 2015;58(5):870–85.

    Article  CAS  PubMed  Google Scholar 

  48. Suzuki H, Tsukahara T. A view of pre-mRNA splicing from RNase R resistant RNAs. Int J Mol Sci. 2014;15(6):9331–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO. Cell-type specific features of circular RNA expression. PLoS Genet. 2013;9(9): e1003777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lasda E, Parker R. Circular RNAs: diversity of form and function. RNA (New York, NY). 2014;20(12):1829–42.

    Article  CAS  PubMed  Google Scholar 

  51. Glažar P, Papavasileiou P, Rajewsky N. circBase: a database for circular RNAs. RNA (New York, NY). 2014;20(11):1666–70.

    Article  PubMed  Google Scholar 

  52. Chen X, Chen RX, Wei WS, Li YH, Feng ZH, Tan L, et al. PRMT5 circular RNA promotes metastasis of urothelial carcinoma of the bladder through sponging miR-30c to induce epithelial-mesenchymal transition. Clin Cancer Res: Off J Am Assoc Cancer Res. 2018;24(24):6319–30.

    Article  CAS  Google Scholar 

  53. Maiti P, Al-Gharaibeh A, Kolli N, Dunbar GL. Solid lipid curcumin particles induce more DNA fragmentation and cell death in cultured human glioblastoma cells than does natural curcumin. Oxidative Med Cell Longev. 2017;2017:9656719.

    Article  Google Scholar 

  54. Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 2015;25(8):981–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zheng X, Ma YF, Zhang XR, Li Y, Zhao HH, Han SG. Circ_0056618 promoted cell proliferation, migration and angiogenesis through sponging with miR-206 and upregulating CXCR4 and VEGF-A in colorectal cancer. Eur Rev Med Pharmacol Sci. 2020;24(8):4190–202.

    CAS  PubMed  Google Scholar 

  56. Chen LY, Wang L, Ren YX, Pang Z, Liu Y, Sun XD, et al. The circular RNA circ-ERBIN promotes growth and metastasis of colorectal cancer by miR-125a-5p and miR-138-5p/4EBP-1 mediated cap-independent HIF-1α translation. Mol Cancer. 2020;19(1):164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xiao H, Liu M. Circular RNA hsa_circ_0053277 promotes the development of colorectal cancer by upregulating matrix metallopeptidase 14 via miR-2467-3p sequestration. J Cell Physiol. 2020;235(3):2881–90.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang X, Xu Y, Yamaguchi K, Hu J, Zhang L, Wang J, et al. Circular RNA circVAPA knockdown suppresses colorectal cancer cell growth process by regulating miR-125a/CREB5 axis. Cancer cell Int. 2020;20:103.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lin X, Huang C, Chen Z, Wang H, Zeng Y. CircRNA_100876 is upregulated in gastric cancer (GC) and promotes the GC cells’ growth, migration and invasion via miR-665/YAP1 signaling. Front Genet. 2020;11:546275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jiang Z, Hu H, Hu W, Hou Z, Liu W, Yu Z, et al. Circ-RNF121 regulates tumor progression and glucose metabolism by miR-1224-5p/FOXM1 axis in colorectal cancer. Cancer Cell Int. 2021;21(1):596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang J, Wang H, Wu K, Zhan F, Zeng H. Dysregulated circRNA_100876 contributes to proliferation and metastasis of colorectal cancer by targeting microRNA-516b (miR-516b). Cancer Biol Ther. 2020;21(8):733–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nandi D, Cheema PS, Jaiswal N, Nag A. FoxM1: repurposing an oncogene as a biomarker. Semin Cancer Biol. 2018;52(Pt 1):74–84.

    Article  CAS  PubMed  Google Scholar 

  63. Liu H, Bi J, Dong W, Yang M, Shi J, Jiang N, et al. Invasion-related circular RNA circFNDC3B inhibits bladder cancer progression through the miR-1178-3p/G3BP2/SRC/FAK axis. Mol Cancer. 2018;17(1):161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pan Z, Cai J, Lin J, Zhou H, Peng J, Liang J, et al. A novel protein encoded by circFNDC3B inhibits tumor progression and EMT through regulating Snail in colon cancer. Mol Cancer. 2020;19(1):71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dong C, Yuan T, Wu Y, Wang Y, Fan TW, Miriyala S, et al. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell. 2013;23(3):316–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu Y, Li H, Ye X, Ji A, Fu X, Wu H, et al. Hsa_circ_0000231 knockdown inhibits the glycolysis and progression of colorectal cancer cells by regulating miR-502-5p/MYO6 axis. World J Surg Oncol. 2020;18(1):255.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zhang J, Hou L, Liang R, Chen X, Zhang R, Chen W, et al. CircDLST promotes the tumorigenesis and metastasis of gastric cancer by sponging miR-502-5p and activating the NRAS/MEK1/ERK1/2 signaling. Mol Cancer. 2019;18(1):80.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Masters TA, Tumbarello DA, Chibalina MV, Buss F. MYO6 regulates spatial organization of signaling endosomes driving AKT activation and actin dynamics. Cell Rep. 2017;19(10):2088–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Guo X, Zhang Y, Liu L, Yang W, Zhang Q. HNF1A-AS1 regulates cell migration, invasion and glycolysis via modulating miR-124/MYO6 in colorectal cancer cells. OncoTargets Ther. 2020;13:1507–18.

    Article  CAS  Google Scholar 

  71. Chen J, Yu Y, Li H, Hu Q, Chen X, He Y, et al. Long non-coding RNA PVT1 promotes tumor progression by regulating the miR-143/HK2 axis in gallbladder cancer. Mol Cancer. 2019;18(1):33.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Afzali F, Salimi M. Unearthing regulatory axes of breast cancer circRNAs networks to find novel targets and fathom pivotal mechanisms. Interdiscip Sci Comput Life Sci. 2019;11(4):711–22.

    Article  CAS  Google Scholar 

  73. Guo ST, Guo XY, Wang J, Wang CY, Yang RH, Wang FH, et al. MicroRNA-645 is an oncogenic regulator in colon cancer. Oncogenesis. 2017;6(5): e335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yu Y, Lei X. CircFAM120B blocks the development of colorectal cancer by activating TGF-beta receptor II expression via targeting miR-645. Front Cell Dev Biol. 2021;9:682543.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Chen Z, Chen H, Yang L, Li X, Wang Z. CircPLCE1 facilitates the malignant progression of colorectal cancer by repressing the SRSF2-dependent PLCE1 pre-RNA splicing. J Cell Mol Med. 2021;25(15):7244–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yi B, Dai K, Yan Z, Yin Z. Circular RNA PLCE1 promotes epithelial mesenchymal transformation, glycolysis in colorectal cancer and M2 polarization of tumor-associated macrophages. Bioengineered. 2022;13(3):6243–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pan Y, Qin J, Sun H, Xu T, Wang S, He B. MiR-485-5p as a potential biomarker and tumor suppressor in human colorectal cancer. Biomark Med. 2020;14(3):239–48.

    Article  CAS  PubMed  Google Scholar 

  78. Yan Y, Xu H, Zhang L, Zhou X, Qian X, Zhou J, et al. RRAD suppresses the Warburg effect by downregulating ACTG1 in hepatocellular carcinoma. OncoTargets Ther. 2019;12:1691–703.

    Article  CAS  Google Scholar 

  79. Mo WL, Jiang JT, Zhang L, Lu QC, Li J, Gu WD, et al. Circular RNA hsa_circ_0000467 promotes the development of gastric cancer by competitively binding to MicroRNA miR-326–3p. BioMed Res Int. 2020;2020:4030826.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Chen H, Wu C, Luo L, Wang Y, Peng F. circ_0000467 promotes the proliferation, metastasis, and angiogenesis in colorectal cancer cells through regulating KLF12 expression by sponging miR-4766-5p. Open Med (Warsaw, Poland). 2021;16(1):1415–27.

    Article  CAS  Google Scholar 

  81. Xie L, Pan Z. Circular RNA circ_0000467 regulates colorectal cancer development via miR-382-5p/EN2 axis. Bioengineered. 2021;12(1):886–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Huang Y, Chen Z, Zhou X, Huang H. Circ_0000467 exerts an oncogenic role in colorectal cancer via miR-330–5p-dependent regulation of TYRO3. Biochem Genet. 2022. https://doi.org/10.1007/s10528-021-10171-7.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Qin A, Qian W. MicroRNA-7 inhibits colorectal cancer cell proliferation, migration and invasion via TYRO3 and phosphoinositide 3-kinase/protein B kinase/mammalian target of rapamycin pathway suppression. Int J Mol Med. 2018;42(5):2503–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Holgersson A, Erdal H, Nilsson A, Lewensohn R, Kanter L. Expression of DNA-PKcs and Ku86, but not Ku70, differs between lymphoid malignancies. Exp Mol Pathol. 2004;77(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  85. Sun G, Yang L, Dong C, Ma B, Shan M, Ma B. PRKDC regulates chemosensitivity and is a potential prognostic and predictive marker of response to adjuvant chemotherapy in breast cancer patients. Oncol Rep. 2017;37(6):3536–42.

    Article  CAS  PubMed  Google Scholar 

  86. Li Y, Zang H, Zhang X, Huang G. circ_0136666 facilitates the progression of colorectal cancer via miR-383/CREB1 axis. Cancer Manag Res. 2020;12:6795–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li J, Smith AR, Marquez RT, Li J, Li K, Lan L, et al. MicroRNA-383 acts as a tumor suppressor in colorectal cancer by modulating CREPT/RPRD1B expression. Mol Carcinog. 2018;57(10):1408–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sakamoto KM, Frank DA. CREB in the pathophysiology of cancer: implications for targeting transcription factors for cancer therapy. Clin Cancer Res: Off J Am Assoc Cancer Res. 2009;15(8):2583–7.

    Article  CAS  Google Scholar 

  89. Shaywitz AJ, Greenberg ME. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem. 1999;68:821–61.

    Article  CAS  PubMed  Google Scholar 

  90. Chao HM, Wang TW, Chern E, Hsu SH. Regulatory RNAs, microRNA, long-non coding RNA and circular RNA roles in colorectal cancer stem cells. World J Gastrointest Oncol. 2022;14(4):748–64.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Zhang Q, Wang W, Zhou Q, Chen C, Yuan W, Liu J, et al. Roles of circRNAs in the tumour microenvironment. Mol Cancer. 2020;19(1):14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen C, Xia C, Tang H, Jiang Y, Wang S, Zhang X, et al. Circular RNAs involve in immunity of digestive cancers from bench to bedside: a review. Front Immunol. 2022;13:833058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Cuiying Scientific Training Program for Undergraduates of Lanzhou University Second Hospital (CYXZ2022-47); Lanzhou University 2022 College Students Innovation and Entrepreneurship [20220060024; 20220060112; 20220060053]; National Natural Science Foundation of China, 82060800; Gansu Province Youth Science and Technology Fund program, 20JR10RA759; Health industry science and technology plan of Gansu Province, GSWSKY2020-30.

Author information

Authors and Affiliations

Authors

Contributions

YL and CJ contributed to the conception and design of the manuscript. QL, RH, and MW outlined and revised the manuscript. XG analyzed and finalized the figures and table. All authors have read the manuscript and approved to the submitted version.

Corresponding author

Correspondence to Xiaohu Guo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

Institutional review board statement

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Jiang, C., Liu, Q. et al. CircRNAs: emerging factors for regulating glucose metabolism in colorectal cancer. Clin Transl Oncol 25, 2321–2331 (2023). https://doi.org/10.1007/s12094-023-03131-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03131-7

Keywords

Navigation