Skip to main content

Advertisement

Log in

125I seed implantation enhances arsenic trioxide-induced apoptosis and anti-angiogenesis in lung cancer xenograft mice

  • RESEARCH ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background and Purpose

Arsenic trioxide (ATO) exerts anticancer effects on lung cancer. However, the clinical use of ATO is limited due to its systemic toxicity and resistance of lung cancer cells. The present study aimed to investigate the effects of ATO, alone and in combination with 125I seed implantation on tumor growth and proliferation in lung cancer xenograft mice, and investigate the possible molecular mechanisms.

Methods

The transmission electron microscope observed the tumor ultrastructure of lung cancer xenograft mice. The proliferation index of Ki-67 and the number and morphology of tumor microvessels were detected with immunohistochemical staining. The protein and mRNA expression were examined by western blot and real-time PCR assay.

Results

The in vivo results demonstrated that ATO combined with 125I seed significantly inhibited tumor growth and proliferation, as well as promoted apoptosis, and decreased the Ki-67 index and microvessel density in lung cancer xenograft mice. Moreover, ATO combined with 125I seed decreased the protein and mRNA expression levels of HIF-1α, VEGF, and BCL-2, and increased those of BAX and P53.

Conclusions

ATO combined with 125I seed significantly inhibited tumor growth and proliferation in lung cancer, which may be accomplished by inhibiting tumor angiogenesis and inducing apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2021;71(3):209–49.

    PubMed  Google Scholar 

  2. Yang MH, Chang KJ, Li B, Chen WS. Arsenic trioxide suppresses tumor growth through antiangiogenesis via notch signaling blockade in small-cell lung cancer. Biomed Res Int. 2019;2019:4647252.

    PubMed  PubMed Central  Google Scholar 

  3. Huang W, Zeng YC. A candidate for lung cancer treatment: arsenic trioxide. Clinical Transl Oncol: Off Publ Fed Span Oncol Soc Natl Cancer Inst Mexico. 2019;21(9):1115–26.

    Article  CAS  Google Scholar 

  4. Yang MH, Chang KJ, Zheng JC, Huang H, Sun GY, Zhao XW, et al. Anti-angiogenic effect of arsenic trioxide in lung cancer via inhibition of endothelial cell migration, proliferation and tube formation. Oncol Lett. 2017;14(3):3103–9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chang KJ, Yin JZ, Huang H, Li B, Yang MH. Arsenic trioxide inhibits the growth of cancer stem cells derived from small cell lung cancer by downregulating stem cell-maintenance factors and inducing apoptosis via the Hedgehog signaling blockade. Transl Lung Cancer Res. 2020;9(4):1379–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gu SY, Lai YH, Chen HY, Liu Y, Zhang ZZ. miR-155 mediates arsenic trioxide resistance by activating Nrf2 and suppressing apoptosis in lung cancer cells. Sci Rep. 2017;7(1):12155.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jia SN, Wen FX, Gong TT, Li X, Wang HJ, Sun YM, et al. A review on the efficacy and safety of iodine-125 seed implantation in unresectable pancreatic cancers. Int J Radiat Biol. 2020;96(3):383–9.

    Article  CAS  PubMed  Google Scholar 

  8. Wang ZM, Lu J, Liu T, Chen KM, Huang G, Liu FJ. CT-guided interstitial brachytherapy of inoperable non-small cell lung cancer. Lung Cancer. 2011;74(2):253–7.

    Article  PubMed  Google Scholar 

  9. Wang JJ, Yuan HS, Li JN, Jiang WJ, Jiang YL, Tian SQ. Interstitial permanent implantation of 125I seeds as salvage therapy for re-recurrent rectal carcinoma. Int J Colorectal Dis. 2009;24(4):391–9.

    Article  PubMed  Google Scholar 

  10. Jiang YL, Meng N, Wang JJ, Ran WQ, Yuan HS, Qu A, et al. Percutaneous computed tomography/ultrasonography-guided permanent iodine-125 implantation as salvage therapy for recurrent squamous cell cancers of head and neck. Cancer Biol Ther. 2010;9(12):959–66.

    Article  PubMed  Google Scholar 

  11. Zhao J, Zhi Z, Zhang HT, Zhao JX, Di Y, Xu K, et al. Efficacy and safety of CT-guided 125I brachytherapy in elderly patients with non-small cell lung cancer. Oncol Lett. 2020;20(1):183–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang H, Lu J, Zheng XT, Zha JH, Jing WD, Wang Y, et al. Oligorecurrence non-small cell lung cancer after failure of first-line chemotherapy: computed tomography-guided 125I seed implantation vs second-line chemotherapy. Front Oncol. 2020;10:470.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang T, Lu MJ, Peng S, Zhang WD, Yang G, Liu ZY, et al. CT-guided implantation of radioactive 125I seed in advanced non-small-cell lung cancer after failure of first-line chemotherapy. J Cancer Res Clin Oncol. 2014;140(8):1383–90.

    Article  CAS  PubMed  Google Scholar 

  14. Mo ZQ, Zhang T, Zhang YL, Xiang ZW, Yan HZ, Zhong ZH, et al. Feasibility and clinical value of CT-guided 125I brachytherapy for metastatic soft tissue sarcoma after first-line chemotherapy failure. Eur Radiol. 2018;28(3):1194–203.

    Article  PubMed  Google Scholar 

  15. Wang ZM, Zhao ZZ, Lu J, Chen ZJ, Mao AW, Teng GJ, et al. A comparison of the biological effects of 125I seeds continuous low-dose-rate radiation and 60Co high-dose-rate gamma radiation on non-small cell lung cancer cells. PLoS ONE. 2015;10(8): e0133728.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Akanji MA, Rotimi D, Adeyemi OS. Hypoxia-inducible factors as an alternative source of treatment strategy for cancer. Oxid Med Cell Longev. 2019;2019:8547846.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jiang XJ, Chen CZ, Zhao W, Zhang ZZ. Sodium arsenite and arsenic trioxide differently affect the oxidative stress, genotoxicity and apoptosis in A549 cells: an implication for the paradoxical mechanism. Environ Toxicol Pharmacol. 2013;36(3):891–902.

    Article  CAS  PubMed  Google Scholar 

  18. Walker AM, Stevens JJ, Ndebele K, Tchounwou PB. Evaluation of arsenic trioxide potential for lung cancer treatment: assessment of apoptotic mechanisms and oxidative damage. J Cancer Sci Ther. 2016;8(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  19. Fan XY, Chen XY, Liu YJ, Zhong HM, Jiang FL, Liu Y. Oxidative stress-mediated intrinsic apoptosis in human promyelocytic leukemia HL-60 cells induced by organic arsenicals. Sci Rep. 2016;6:29865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aggarwal C, Somaiah N, Simon G. Antiangiogenic agents in the management of non-small cell lung cancer: where do we stand now and where are we headed? Cancer Biol Ther. 2012;13:247–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xiang GL, Zhu XH, Lin CZ, Wang LJ, Sun Y, Cao YW, et al. 125I seed irradiation induces apoptosis and inhibits angiogenesis by decreasing HIF-1α and VEGF expression in lung carcinoma xenografts. Oncol Rep. 2017;37(5):3075–83.

    Article  CAS  PubMed  Google Scholar 

  22. Chen FH, Wang D. Inhibition of glioblastoma growth and invasion by 125I brachytherapy in rat glioma model. Am J Transl Res. 2017;9(5):2243–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao WC, Cao L, Ying HR, Zhang WJ, Li DT, Zhu XL, et al. Endothelial CDS2 deficiency causes VEGFA-mediated vascular regression and tumor inhibition. Cell Res. 2019;29(11):895–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science (New York, NY). 1989;246(4935):1306–9.

    Article  CAS  Google Scholar 

  25. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993;362(6243):841–4.

    Article  CAS  PubMed  Google Scholar 

  26. Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15(1):49–63.

    Article  CAS  PubMed  Google Scholar 

  27. Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2(9):647–56.

    Article  CAS  PubMed  Google Scholar 

  28. Surget S, Khoury MP, Bourdon JC. Uncovering the role of p53 splice variants in human malignancy: a clinical perspective. Onco Targets Ther. 2013;7:57–68.

    PubMed  PubMed Central  Google Scholar 

  29. Chen JD. The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb Perspect Med. 2016;6(3): a026104.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jin Q, Lin CZ, Zhu XH, Cao YW, Guo CH, Wang LJ. 125I seeds irradiation inhibits tumor growth and induces apoptosis by Ki-67, P21, survivin, livin and caspase-9 expression in lung carcinoma xenografts. Radiat Oncol. 2020;15(1):238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zheng JP, Luo J, Zeng H, Guo LW, Shao GL. 125I suppressed the Warburg effect viaregulating miR-338/PFKL axis in hepatocellular carcinoma. Biomed Pharmacother. 2019;119: 109402.

    Article  CAS  PubMed  Google Scholar 

  32. Zhao GS, Liu S, Yang L, Li C, Wang RY, Zhou J, et al. Evaluation of radioactive 125I seed implantation for the treatment of refractory malignant tumours based on a CT-guided 3D template-assisted technique: efficacy and safety. BMC Cancer. 2020;20(1):718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liang YS, Wang ZY, Zhang HT, Gao Z, Zhao JX, Sui AX, et al. Three-dimensional-printed individual template-guided 125I seed implantation for the cervical lymph node metastasis: a dosimetric and security study. J Cancer Res Ther. 2018;14(1):30–5.

    Article  PubMed  Google Scholar 

  34. Ji Z, Sun HT, Jiang YL, Guo FX, Peng R, Fan JH, et al. Comparative study for CT-guided 125I seed implantation assisted by 3D printing coplanar and non-coplanar template in peripheral lung cancer. J Contemp Brachytherapy. 2019;11(2):169–73.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhang HT, Dev D, Yu HM, Di XM, Liang YS, Zhang LJ, et al. Feasibility of three-dimensional-printed template-guided 125I seed brachytherapy and dosimetric evaluation in patients with malignant tumor. J Cancer Res Ther. 2019;15(4):793–800.

    Article  PubMed  Google Scholar 

  36. Wilkinson-Ryan I, Binder PS, Pourabolghasem S, Al-Hammadi N, Fuh K, Hagemann A, et al. Concomitant chemotherapy and radiation for the treatment of advanced-stage endometrial cancer. Gynecol Oncol. 2014;134(1):24–8.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang SC, Zheng YH, Yu PP, Yu FX, Zhang QY, Lv YX, et al. The combined treatment of CT-guided percutaneous 125I seed implantation and chemotherapy for non-small-cell lung cancer. J Cancer Res Clin Oncol. 2011;137(12):1813–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Department of Pharmacy of the Second Affiliated Hospital of Xi'an Jiaotong University for providing arsenic trioxide and the 125I seeds provided by the Seed Therapy Center of Tumor Hospital of Shaanxi Province.

Funding

This project is supported by the China Postdoctoral Science Foundation (grant no. 2020M683511), Shaanxi Province key research and development program (grant no. 2022SF-261) and Incubation Project of National Natural Science Foundation of Tumor Hospital of Shaanxi Province (grant no. SC221107).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang-Yan Lei or Le Han.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval and consent to participate

This study was approved by the Ethics Committee of the Experimental Animal of the Shaanxi University of Chinese Medicine (SUCMDL20191025001).

Informed Consent

The consent form for the ethical review of animal experiments has been uploaded in the attachment.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, ZH., Zhang, YL., Yuan, B. et al. 125I seed implantation enhances arsenic trioxide-induced apoptosis and anti-angiogenesis in lung cancer xenograft mice. Clin Transl Oncol 25, 2127–2137 (2023). https://doi.org/10.1007/s12094-023-03092-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03092-x

Keywords

Navigation