Skip to main content

Advertisement

Log in

Immune infiltration could predict the efficacy of short-term radiotherapy in patients with cervical cancer

  • RESEARCH ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Radiotherapy is the main treatment for cervical cancer. It is usually applied alone or in combination with surgery and/or chemotherapy. To explore the association between immune microenvironment of cervical cancer and radiotherapy response, we collected 20 paired cervical cancer tumor samples before and after radiotherapy and partial clinical information. With paired-end RNA-seq, we quantified the immune infiltration and tumor purity of these samples, and obtained 6350 differentially expressed genes before and after radiotherapy. With the help of R language, the function enrichment analysis and 22 immune cells infiltration analysis were carried out. Moreover, we built a random forest model based on the immune microenvironment to predict the short-term efficacy of radiotherapy. We found that the effect of radiotherapy on the immune microenvironment of stage III and IV cervical cancer patients was weaker than that of stage I and II cervical cancer patients. Radiotherapy can significantly reduce the tumor purity and increase immune infiltration. The proportions of the immune infiltrating cells are predictive of the radiotherapy efficacy. In addition, the local mucositis caused by radiotherapy can improve the curative effect of radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. McGuire S. World cancer report 2014. Geneva, Switzerland: world health organization, international agency for research on cancer, WHO press, 2015. Adv Nutr. 2016;7:418–9. https://doi.org/10.3945/an.116.012211.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424. https://doi.org/10.3322/caac.21492.

    Article  PubMed  Google Scholar 

  3. Koh WJ, Abu-Rustum NR, Bean S, Bradley K, Campos SM, Cho KR, et al. Cervical cancer, version 3.2019, nccn clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2019;17:64–84. https://doi.org/10.6004/jnccn.2019.0001.

    Article  CAS  Google Scholar 

  4. Kim YJ, Lee KJ, Park KR, Kim J, Jung W, Lee R, et al. Prognostic analysis of uterine cervical cancer treated with postoperative radiotherapy: importance of positive or close parametrial resection margin. Radiat Oncol J. 2015;33:109–16. https://doi.org/10.3857/roj.2015.33.2.109.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Couvreur K, Naert E, De Jaeghere E, Tummers P, Makar A, De Visschere P, et al. Neo-adjuvant treatment of adenocarcinoma and squamous cell carcinoma of the cervix results in significantly different pathological complete response rates. BMC Cancer. 2018;18:1101. https://doi.org/10.1186/s12885-018-5007-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pfaendler KS, Tewari KS. Changing paradigms in the systemic treatment of advanced cervical cancer. Am J Obstet Gynecol. 2016;214:22–30. https://doi.org/10.1016/j.ajog.2015.07.022.

    Article  PubMed  Google Scholar 

  7. Moding EJ, Kastan MB, Kirsch DG. Strategies for optimizing the response of cancer and normal tissues to radiation. Nat Rev Drug Discov. 2013;12:526–42. https://doi.org/10.1038/nrd4003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Delaney G, Jacob S, Featherstone C, Barton M. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer. 2005;104:1129–37. https://doi.org/10.1002/cncr.21324.

    Article  PubMed  Google Scholar 

  9. Brown JM. Therapeutic targets in radiotherapy. Int J Radiat Oncol Biol Phys. 2001;49:319–26. https://doi.org/10.1016/s0360-3016(00)01482-6.

    Article  CAS  PubMed  Google Scholar 

  10. Tofilon PJ, Saxman S, Coleman CN. Molecular targets for radiation therapy: bringing preclinical data into clinical trials. Clin Cancer Res. 2003;9:3518–20.

    CAS  PubMed  Google Scholar 

  11. Loi M, Desideri I, Greto D, Mangoni M, Sottili M, Meattini I, et al. Radiotherapy in the age of cancer immunology: current concepts and future developments. Crit Rev Oncol Hematol. 2017;112:1–10. https://doi.org/10.1016/j.critrevonc.2017.02.002.

    Article  PubMed  Google Scholar 

  12. Fisher B, Anderson S, Bryant J, Margolese RG, Deutsch M, Fisher ER, et al. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med. 2002;347:1233–41. https://doi.org/10.1056/NEJMoa022152.

    Article  PubMed  Google Scholar 

  13. Manda K, Glasow A, Paape D, Hildebrandt G. Effects of ionizing radiation on the immune system with special emphasis on the interaction of dendritic and T cells. Front Oncol. 2012;2:102. https://doi.org/10.3389/fonc.2012.00102.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Starr TK, Jameson SC, Hogquist KA. Positive and negative selection of T cells. Annu Rev Immunol. 2003;21:139–76. https://doi.org/10.1146/annurev.immunol.21.120601.141107.

    Article  CAS  PubMed  Google Scholar 

  15. Arens R, Schoenberger SP. Plasticity in programming of effector and memory CD8 T-cell formation. Immunol Rev. 2010;235:190–205. https://doi.org/10.1111/j.0105-2896.2010.00899.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hugues S. Dynamics of dendritic cell-T cell interactions: a role in T cell outcome. Semin Immunopathol. 2010;32:227–38. https://doi.org/10.1007/s00281-010-0211-2.

    Article  CAS  PubMed  Google Scholar 

  17. Hallahan D, Kuchibhotla J, Wyble C. Cell adhesion molecules mediate radiation-induced leukocyte adhesion to the vascular endothelium. Can Res. 1996;56:5150–5.

    CAS  Google Scholar 

  18. Hiam-Galvez KJ, Allen BM, Spitzer MH. Systemic immunity in cancer. Nat Rev Cancer. 2021;21:345–59. https://doi.org/10.1038/s41568-021-00347-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Galdiero MR, Garlanda C, Jaillon S, Marone G, Mantovani A. Tumor associated macrophages and neutrophils in tumor progression. J Cell Physiol. 2013;228:1404–12. https://doi.org/10.1002/jcp.24260.

    Article  CAS  PubMed  Google Scholar 

  20. Van Overmeire E, Laoui D, Keirsse J, Van Ginderachter JA, Sarukhan A. Mechanisms driving macrophage diversity and specialization in distinct tumor microenvironments and parallelisms with other tissues. Front Immunol. 2014;5:127. https://doi.org/10.3389/fimmu.2014.00127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen Y, Li ZY, Zhou GQ, Sun Y. An immune-related gene prognostic index for head and neck squamous cell carcinoma. Clin Cancer Res. 2021;27:330–41. https://doi.org/10.1158/1078-0432.ccr-20-2166.

    Article  CAS  PubMed  Google Scholar 

  22. Jarosz-Biej M, Smolarczyk R, Cichoń T, Kułach N. Tumor microenvironment as a “game changer” in cancer radiotherapy. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20133212.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Herrera FG, Ronet C, Ochoa de Olza M, Barras D, Crespo I, Andreatta M, et al. Low-dose radiotherapy reverses tumor immune desertification and resistance to immunotherapy. Cancer Discov. 2022;12:108–33. https://doi.org/10.1158/2159-8290.cd-21-0003.

    Article  CAS  PubMed  Google Scholar 

  24. Yang X, Ren H, Fu J. Combinations of radiotherapy with immunotherapy in cervical cancer. J Cancer. 2022;13:1480–9. https://doi.org/10.7150/jca.65074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Van Meir H, Nout RA, Welters MJ, Loof NM, de Kam ML, van Ham JJ, et al. Impact of (chemo)radiotherapy on immune cell composition and function in cervical cancer patients. Oncoimmunology. 2017;6: e1267095. https://doi.org/10.1080/2162402x.2016.1267095.

    Article  PubMed  Google Scholar 

  26. Zou R, Gu R, Yu X, Hu Y, Yu J, Xue X, et al. Characteristics of infiltrating immune cells and a predictive immune model for cervical cancer. J Cancer. 2021;12:3501–14. https://doi.org/10.7150/jca.55970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Giraldo NA, Becht E, Vano Y, Petitprez F, Lacroix L, Validire P, et al. Tumor-infiltrating and peripheral blood T-cell immunophenotypes predict early relapse in localized clear cell renal cell carcinoma. Clin Cancer Res. 2017;23:4416–28. https://doi.org/10.1158/1078-0432.ccr-16-2848.

    Article  CAS  PubMed  Google Scholar 

  28. Scott DW, Chan FC, Hong F, Rogic S, Tan KL, Meissner B, et al. Gene expression-based model using formalin-fixed paraffin-embedded biopsies predicts overall survival in advanced-stage classical Hodgkin lymphoma. J Clin Oncol. 2013;31:692–700. https://doi.org/10.1200/jco.2012.43.4589.

    Article  PubMed  Google Scholar 

  29. Muris JJ, Meijer CJ, Cillessen SA, Vos W, Kummer JA, Bladergroen BA, et al. Prognostic significance of activated cytotoxic T-lymphocytes in primary nodal diffuse large B-cell lymphomas. Leukemia. 2004;18:589–96. https://doi.org/10.1038/sj.leu.2403240.

    Article  CAS  PubMed  Google Scholar 

  30. Fortis SP, Sofopoulos M, Sotiriadou NN, Haritos C, Vaxevanis CK, Anastasopoulou EA, et al. Differential intratumoral distributions of CD8 and CD163 immune cells as prognostic biomarkers in breast cancer. J Immunother Cancer. 2017;5:39. https://doi.org/10.1186/s40425-017-0240-7.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Petitprez F, Fossati N, Vano Y, Freschi M, Becht E, Lucianò R, et al. PD-L1 expression and CD8(+) T-cell infiltrate are associated with clinical progression in patients with node-positive prostate cancer. Eur Urol Focus. 2019;5:192–6. https://doi.org/10.1016/j.euf.2017.05.013.

    Article  PubMed  Google Scholar 

  32. Droeser R, Zlobec I, Kilic E, Güth U, Heberer M, Spagnoli G, et al. Differential pattern and prognostic significance of CD4+, FOXP3+ and IL-17+ tumor infiltrating lymphocytes in ductal and lobular breast cancers. BMC Cancer. 2012;12:134. https://doi.org/10.1186/1471-2407-12-134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51. https://doi.org/10.1016/j.cell.2010.03.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity. 2013;39:74–88. https://doi.org/10.1016/j.immuni.2013.06.014.

    Article  CAS  PubMed  Google Scholar 

  35. Senovilla L, Vitale I, Martins I, Tailler M, Pailleret C, Michaud M, et al. An immunosurveillance mechanism controls cancer cell ploidy. Science. 2012;337:1678–84. https://doi.org/10.1126/science.1224922.

    Article  CAS  PubMed  Google Scholar 

  36. Reiman JM, Kmieciak M, Manjili MH, Knutson KL. Tumor immunoediting and immunosculpting pathways to cancer progression. Semin Cancer Biol. 2007;17:275–87. https://doi.org/10.1016/j.semcancer.2007.06.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang Y, Yu M, Jing Y, Cheng J, Zhang C, Cheng L, et al. Baseline immunity and impact of chemotherapy on immune microenvironment in cervical cancer. Br J Cancer. 2021;124:414–24. https://doi.org/10.1038/s41416-020-01123-w.

    Article  CAS  PubMed  Google Scholar 

  38. Carlson DJ, Stewart RD, Li XA, Jennings K, Wang JZ, Guerrero M. Comparison of in vitro and in vivo alpha/beta ratios for prostate cancer. Phys Med Biol. 2004;49:4477–91. https://doi.org/10.1088/0031-9155/49/19/003.

    Article  PubMed  Google Scholar 

  39. Gong Z, Zhang J, Guo W. Tumor purity as a prognosis and immunotherapy relevant feature in gastric cancer. Cancer Med. 2020;9:9052–63. https://doi.org/10.1002/cam4.3505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mao Y, Feng Q, Zheng P, Yang L, Liu T, Xu Y, et al. Low tumor purity is associated with poor prognosis, heavy mutation burden, and intense immune phenotype in colon cancer. Cancer Manag Res. 2018;10:3569–77. https://doi.org/10.2147/cmar.s171855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Anderson NM, Simon MC. The tumor microenvironment. Curr Biol. 2020;30:R921-r925. https://doi.org/10.1016/j.cub.2020.06.081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Deng Y, Song Z, Huang L, Guo Z, Tong B, Sun M, et al. Tumor purity as a prognosis and immunotherapy relevant feature in cervical cancer. Aging. 2021;13:24768–85. https://doi.org/10.18632/aging.203714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tao Z, Gao J, Qian L, Huang Y, Zhou Y, Yang L, et al. Factors associated with acute oral mucosal reaction induced by radiotherapy in head and neck squamous cell carcinoma: a retrospective single-center experience. Medicine. 2017;96: e8446. https://doi.org/10.1097/md.0000000000008446.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Xu T, Liu Y, Dou S, Li F, Guan X, Zhu G. Weekly cetuximab concurrent with IMRT aggravated radiation-induced oral mucositis in locally advanced nasopharyngeal carcinoma: Results of a randomized phase II study. Oral Oncol. 2015;51:875–9. https://doi.org/10.1016/j.oraloncology.2015.06.008.

    Article  CAS  PubMed  Google Scholar 

  45. Epstein JB, Schubert MM. Oral mucositis in myelosuppressive cancer therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;88:273–6. https://doi.org/10.1016/s1079-2104(99)70026-0.

    Article  CAS  PubMed  Google Scholar 

  46. Harris DJ. Cancer treatment-induced mucositis pain: strategies for assessment and management. Ther Clin Risk Manag. 2006;2:251–8. https://doi.org/10.2147/tcrm.2006.2.3.251.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (82073339; 62072058), Project of Wuxi Health Committee (Q202015) and Scientific Projects of Changzhou Medical Center raised by Nanjing Medical University (CMCB202201).

Author information

Authors and Affiliations

Authors

Contributions

ZS, XL, HL, JL conceived and designed the experiment, and analyzed the data. JS, SZ collected clinical cervical cancer samples. ZS, XL wrote this paper. All the authors reviewed the manuscript.

Corresponding author

Correspondence to Judong Luo.

Ethics declarations

Ethical approval

Standardize treatment according to NCCN guidelines. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from the patient included in the case report.

Conflict of interest

The author is not required to declare a conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Liu, X., Song, J. et al. Immune infiltration could predict the efficacy of short-term radiotherapy in patients with cervical cancer. Clin Transl Oncol 25, 1353–1367 (2023). https://doi.org/10.1007/s12094-022-03033-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-03033-0

Keywords

Navigation