Skip to main content

Advertisement

Log in

NEDD4L represses prostate cancer cell proliferation via modulating PHF8 through the ubiquitin–proteasome pathway

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

Prostate cancer (PC) is a heterogeneous malignancy that greatly threatens man’s health. E3 ubiquitin-protein ligase neural precursor cell expressed developmentally downregulated 4-like (NEDD4L) imparts an regulatory role in various malignancies. This study focused on the modulatory mechanism of NEDD4L in proliferation of prostate cancer cells (PCCs) via regulating histone demethylase plant homeodomain finger protein 8 (PHF8/KDM7B) through the ubiquitin–proteasome system.

Methods

The expression levels of NEDD4L, PHF8, H3 lysine 9 dimethylation (H3K9me2) and activating transcription factor 2 (ATF2) in PC tissues and cell lines were detected via real-time quantitative polymerase chain reaction and Western blotting. After transfection of pcDNA3.1-NEDD4L, pcDNA3.1-PHF8, and pcDNA3.1-ATF2 into PCCs, cell proliferation was assessed via the cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays. Interaction between NEDD4L and PHF8 was identified via the protein immunoprecipitation. The ubiquitination level of PHF8 was determined via the ubiquitination detection. The enrichments of H3K9me2 and PHF8 in the ATF2 promotor region were detected via the chromatin-immunoprecipitation assay.

Results

PHF8 and ATF2 were highly expressed while NEDD4L was poorly expressed in PC tissues and cells. NEDD4L overexpression reduced proliferation of PCCs. NEDD4Linduced degradation of PHF8 via ubiquitination. PHF8 limited the enrichment of H3K9me2 in the ATF2 promotor region and enhanced ATF2 transcription. Upregulation of PHF8 or ATF2 abolished the inhibitory role of NEDD4L in proliferation of PCCs.

Conclusion

NEDD4L facilitated degradation of PHF8 to limit ATF2 transcription, thereby suppressing proliferation of PCCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.           Funding This work was supported by the Scientific Research Funding Project of Soochow University (Grant number 201900180034).

References

  1. Sandhu S, Moore CM, Chiong E, Beltran H, Bristow RG, Williams SG. Prostate cancer. Lancet. 2021;398(10305):1075–90.

    Article  CAS  Google Scholar 

  2. Wang G, Zhao D, Spring DJ, DePinho RA. Genetics and biology of prostate cancer. Genes Dev. 2018;32(17–18):1105–40.

    Article  CAS  Google Scholar 

  3. Mansour MA. Ubiquitination: friend and foe in cancer. Int J Biochem Cell Biol. 2018;101:80–93.

    Article  CAS  Google Scholar 

  4. Rape M. Ubiquitylation at the crossroads of development and disease. Nat Rev Mol Cell Biol. 2018;19(1):59–70.

    Article  CAS  Google Scholar 

  5. Xie S, Xia L, Song Y, Liu H, Wang ZW, Zhu X. Insights into the biological role of NEDD4L E3 ubiquitin ligase in human cancers. Front Oncol. 2021;11: 774648.

    Article  Google Scholar 

  6. Jiang X, Zhang S, Yin Z, Sheng Y, Yan Q, Sun R, Lu M, Zhang Z, Li Y. The correlation between NEDD4L and HIF-1alpha levels as a gastric cancer prognostic marker. Int J Med Sci. 2019;16(11):1517–24.

    Article  CAS  Google Scholar 

  7. Lee DE, Yoo JE, Kim J, Kim S, Kim S, Lee H, Cheong H. NEDD4L downregulates autophagy and cell growth by modulating ULK1 and a glutamine transporter. Cell Death Dis. 2020;11(1):38.

    Article  CAS  Google Scholar 

  8. Hu XY, Xu YM, Fu Q, Yu JJ, Huang J. Nedd4L expression is downregulated in prostate cancer compared to benign prostatic hyperplasia. Eur J Surg Oncol. 2009;35(5):527–31.

    Article  CAS  Google Scholar 

  9. Chaturvedi SS, Ramanan R, Waheed SO, Karabencheva-Christova TG, Christov CZ. Structure-function relationships in KDM7 histone demethylases. Adv Protein Chem Struct Biol. 2019;117:113–25.

    Article  CAS  Google Scholar 

  10. Hu Y, Mu H, Yang Y. Histone demethylase PHF8 promotes cell growth and metastasis of non-small-cell lung cancer through activating Wnt/beta-catenin signaling pathway. Histol Histopathol. 2021;36(8):869–77.

    CAS  Google Scholar 

  11. Cai MZ, Wen SY, Wang XJ, Liu Y, Liang H. MYC regulates PHF8, which promotes the progression of gastric cancer by suppressing miR-22-3p. Technol Cancer Res Treat. 2020;19:1533033820967472.

    Article  CAS  Google Scholar 

  12. Ye H, Yang Q, Qi S, Li H. PHF8 Plays an Oncogene Function in Hepatocellular Carcinoma Formation. Oncol Res. 2019;27(5):613–21.

    Article  Google Scholar 

  13. Liu Q, Pang J, Wang LA, Huang Z, Xu J, Yang X, Xie Q, Huang Y, Tang T, Tong D, Liu G, Wang L, Zhang D, Ma Q, Xiao H, Lan W, Qin J, Jiang J. Histone demethylase PHF8 drives neuroendocrine prostate cancer progression by epigenetically upregulating FOXA2. J Pathol. 2021;253(1):106–18.

    Article  CAS  Google Scholar 

  14. Wang Q, Ma S, Song N, Li X, Liu L, Yang S, Ding X, Shan L, Zhou X, Su D, Wang Y, Zhang Q, Liu X, Yu N, Zhang K, Shang Y, Yao Z, Shi L. Stabilization of histone demethylase PHF8 by USP7 promotes breast carcinogenesis. J Clin Invest. 2016;126(6):2205–20.

    Article  Google Scholar 

  15. Chen M, Liu Y, Yang Y, Qiu Y, Wang Z, Li X, Zhang W. Emerging roles of activating transcription factor (ATF) family members in tumourigenesis and immunity: implications in cancer immunotherapy. Genes Dis. 2022;9(4):981–99.

    Article  CAS  Google Scholar 

  16. Xiaoli T, Wenting W, Meixiang Z, Chunlei Z, Chengxia H. Long noncoding RNA RP11–357H14.17 plays an oncogene role in gastric cancer by activating ATF2 signaling and enhancing treg cells. Biomed Res Int. 2021;2021:6635936.

    Article  Google Scholar 

  17. Shen YY, Cui JY, Yuan J, Wang X. MiR-451a suppressed cell migration and invasion in non-small cell lung cancer through targeting ATF2. Eur Rev Med Pharmacol Sci. 2018;22(17):5554–61.

    Google Scholar 

  18. Inoue S, Mizushima T, Ide H, Jiang G, Goto T, Nagata Y, Netto GJ, Miyamoto H. ATF2 promotes urothelial cancer outgrowth via cooperation with androgen receptor signaling. Endocr Connect. 2018;7(12):1397–408.

    Article  CAS  Google Scholar 

  19. Ma J, Chang K, Peng J, Shi Q, Gan H, Gao K, Feng K, Xu F, Zhang H, Dai B, Zhu Y, Shi G, Shen Y, Zhu Y, Qin X, Li Y, Zhang P, Ye D, Wang C. SPOP promotes ATF2 ubiquitination and degradation to suppress prostate cancer progression. J Exp Clin Cancer Res. 2018;37(1):145.

    Article  Google Scholar 

  20. Chen C, Aihemaiti M, Zhang X, Qu H, Sun QL, He QS, Yu WB. Downregulation of histone demethylase JMJD1C inhibits colorectal cancer metastasis through targeting ATF2. Am J Cancer Res. 2018;8(5):852–65.

    CAS  Google Scholar 

  21. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8.

    Article  CAS  Google Scholar 

  22. Ma Q, Chen Z, Jia G, Lu X, Xie X, Jin W. The histone demethylase PHF8 promotes prostate cancer cell growth by activating the oncomiR miR-125b. Onco Targets Ther. 2015;8:1979–88.

    CAS  Google Scholar 

  23. Tong D, Liu Q, Liu G, Yuan W, Wang L, Guo Y, Lan W, Zhang D, Dong S, Wang Y, Xiao H, Mu J, Mao C, Wong J, Jiang J. The HIF/PHF8/AR axis promotes prostate cancer progression. Oncogenesis. 2016;5(12): e283.

    Article  CAS  Google Scholar 

  24. Geng L, Chen X, Zhang M, Luo Z. Ubiquitin-specific protease 14 promotes prostate cancer progression through deubiquitinating the transcriptional factor ATF2. Biochem Biophys Res Commun. 2020;524(1):16–21.

    Article  CAS  Google Scholar 

  25. Erratum: Global cancer statistics (2018). GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2020;70(4):313.

    Article  Google Scholar 

  26. Fujita Y, Tinoco R, Li Y, Senft D, Ronai ZA. Ubiquitin ligases in cancer immunotherapy - balancing antitumor and autoimmunity. Trends Mol Med. 2019;25(5):428–43.

    Article  CAS  Google Scholar 

  27. Senft D, Qi J, Ronai ZA. Ubiquitin ligases in oncogenic transformation and cancer therapy. Nat Rev Cancer. 2018;18(2):69–88.

    Article  CAS  Google Scholar 

  28. Conteduca V, Hess J, Yamada Y, Ku SY, Beltran H. Epigenetics in prostate cancer: clinical implications. Transl Androl Urol. 2021;10(7):3104–16.

    Article  Google Scholar 

  29. Crea F, Sun L, Mai A, Chiang YT, Farrar WL, Danesi R, Helgason CD. The emerging role of histone lysine demethylases in prostate cancer. Mol Cancer. 2012;11:52.

    Article  CAS  Google Scholar 

  30. Chen C, Matesic LE. The Nedd4-like family of E3 ubiquitin ligases and cancer. Cancer Metastasis Rev. 2007;26(3–4):587–604.

    Article  CAS  Google Scholar 

  31. Cardano M, Tribioli C, Prosperi E. Targeting proliferating cell nuclear antigen (PCNA) as an effective strategy to inhibit tumor cell proliferation. Curr Cancer Drug Targets. 2020;20(4):240–52.

    Article  CAS  Google Scholar 

  32. Dillehay KL, Lu S, Dong Z. Antitumor effects of a novel small molecule targeting PCNA chromatin association in prostate cancer. Mol Cancer Ther. 2014;13(12):2817–26.

    Article  CAS  Google Scholar 

  33. Lu S, Dong Z. Additive effects of a small molecular PCNA inhibitor PCNA-I1S and DNA damaging agents on growth inhibition and DNA damage in prostate and lung cancer cells. PLoS ONE. 2019;14(10): e0223894.

    Article  CAS  Google Scholar 

  34. Qi H, Grenier J, Fournier A, Labrie C. Androgens differentially regulate the expression of NEDD4L transcripts in LNCaP human prostate cancer cells. Mol Cell Endocrinol. 2003;210(1–2):51–62.

    Article  CAS  Google Scholar 

  35. Wang Y, Qin T, Hu W, Chen B, Dai M, Xu G. Genome-wide methylation patterns in androgen-independent prostate cancer cells: a comprehensive analysis combining MeDIP-Bisulfite, RNA, and microRNA sequencing data. Genes (Basel). 2018;9(1):32.

    Article  Google Scholar 

  36. Kypta RM, Waxman J. Wnt/beta-catenin signalling in prostate cancer. Nat Rev Urol. 2012;9(8):418–28.

    Article  CAS  Google Scholar 

  37. He Y, Xu W, Xiao YT, Huang H, Gu D, Ren S. Targeting signaling pathways in prostate cancer: mechanisms and clinical trials. Signal Transduct Target Ther. 2022;7(1):198.

    Article  CAS  Google Scholar 

  38. Tanksley JP, Chen X, Coffey RJ. NEDD4L is downregulated in colorectal cancer and inhibits canonical WNT signaling. PLoS ONE. 2013;8(11): e81514.

    Article  Google Scholar 

  39. Chen KC, Chen PH, Ho KH, Shih CM, Chou CM, Cheng CH, Lee CC. IGF-1-enhanced miR-513a-5p signaling desensitizes glioma cells to temozolomide by targeting the NEDD4L-inhibited Wnt/beta-catenin pathway. PLoS ONE. 2019;14(12): e0225913.

    Article  CAS  Google Scholar 

  40. Wang Y, Liu Y, Liu J, Kang R, Tang D. NEDD4L-mediated LTF protein degradation limits ferroptosis. Biochem Biophys Res Commun. 2020;531(4):581–7.

    Article  CAS  Google Scholar 

  41. Zhang R, Zhang W, Zeng Y, Li Y, Zhou J, Zhang Y, Wang A, Lv Y, Zhu J, Liu Z, Huang JA. The regulation of CPNE1 ubiquitination by the NEDD4L is involved in the pathogenesis of non-small cell lung cancer. Cell Death Discov. 2021;7(1):336.

    Article  CAS  Google Scholar 

  42. Lim HJ, Dimova NV, Tan MK, Sigoillot FD, King RW, Shi Y. The G2/M regulator histone demethylase PHF8 is targeted for degradation by the anaphase-promoting complex containing CDC20. Mol Cell Biol. 2013;33(21):4166–80.

    Article  CAS  Google Scholar 

  43. Maina PK, Shao P, Jia X, Liu Q, Umesalma S, Marin M, Long D Jr, Concepcion-Roman S, Qi HH. Histone demethylase PHF8 regulates hypoxia signaling through HIF1alpha and H3K4me3. Biochim Biophys Acta Gene Regul Mech. 2017;1860(9):1002–12.

    Article  CAS  Google Scholar 

  44. Maina PK, Shao P, Liu Q, Fazli L, Tyler S, Nasir M, Dong X, Qi HH. c-MYC drives histone demethylase PHF8 during neuroendocrine differentiation and in castration-resistant prostate cancer. Oncotarget. 2016;7(46):75585–602.

    Article  Google Scholar 

  45. Li N, Guo X, Liu L, Wang L, Cheng R. Molecular mechanism of miR-204 regulates proliferation, apoptosis and autophagy of cervical cancer cells by targeting ATF2. Artif Cells Nanomed Biotechnol. 2019;47(1):2529–35.

    Article  Google Scholar 

  46. Li M, Wu X, Liu N, Li X, Meng F, Song S. Silencing of ATF2 inhibits growth of pancreatic cancer cells and enhances sensitivity to chemotherapy. Cell Biol Int. 2017;41(6):599–610.

    Article  CAS  Google Scholar 

  47. Giannoudis A, Malki MI, Rudraraju B, Mohhamed H, Menon S, Liloglou T, Ali S, Carroll JS, Palmieri C. Activating transcription factor-2 (ATF2) is a key determinant of resistance to endocrine treatment in an in vitro model of breast cancer. Breast Cancer Res. 2020;22(1):126.

    Article  CAS  Google Scholar 

  48. Lo Iacono M, Monica V, Vavala T, Gisabella M, Saviozzi S, Bracco E, Novello S, Papotti M, Scagliotti GV. ATF2 contributes to cisplatin resistance in non-small cell lung cancer and celastrol induces cisplatin resensitization through inhibition of JNK/ATF2 pathway. Int J Cancer. 2015;136(11):2598–609.

    Article  Google Scholar 

  49. Kawasaki H, Schiltz L, Chiu R, Itakura K, Taira K, Nakatani Y, Yokoyama KK. ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation. Nature. 2000;405(6783):195–200.

    Article  CAS  Google Scholar 

  50. Bruhat A, Cherasse Y, Maurin AC, Breitwieser W, Parry L, Deval C, Jones N, Jousse C, Fafournoux P. ATF2 is required for amino acid-regulated transcription by orchestrating specific histone acetylation. Nucleic Acids Res. 2007;35(4):1312–21.

    Article  CAS  Google Scholar 

  51. Zhang S, Dong X, Ji T, Chen G, Shan L. Long non-coding RNA UCA1 promotes cell progression by acting as a competing endogenous RNA of ATF2 in prostate cancer. Am J Transl Res. 2017;9(2):366–75.

    CAS  Google Scholar 

  52. Hellwinkel OJ, Asong LE, Rogmann JP, Sultmann H, Wagner C, Schlomm T, Eichelberg C. Transcription alterations of members of the ubiquitin-proteasome network in prostate carcinoma. Prostate Cancer Prostatic Dis. 2011;14(1):38–45.

    Article  CAS  Google Scholar 

  53. Huang Z, Choi BK, Mujoo K, Fan X, Fa M, Mukherjee S, Owiti N, Zhang N, An Z. The E3 ubiquitin ligase NEDD4 negatively regulates HER3/ErbB3 level and signaling. Oncogene. 2015;34(9):1105–15.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: RF, ZL, GG, and JO; methodology: RF, CW, and JO; data curation: RF and ZL; validation: GG and YJ; writing—original draft: RF; writing—review and editing: RF, ZL, GG, CW, YJ, and JO.

Corresponding author

Correspondence to Jun Ouyang.

Ethics declarations

Conflict of interest

All authors have no conflicts of interest.

Ethical approval

The present experimental protocols were permitted to be conducted with the approval of the Clinical Research Ethics Committee of The First Affiliated Hospital of Soochow University.

Informed consent

Each patient signed an informed consent.

Consent for publication

This article has been read and approved in the present form for submission by all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, R., Li, Z., Ge, G. et al. NEDD4L represses prostate cancer cell proliferation via modulating PHF8 through the ubiquitin–proteasome pathway. Clin Transl Oncol 25, 243–255 (2023). https://doi.org/10.1007/s12094-022-02933-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02933-5

Keywords

Navigation