Skip to main content

Advertisement

Log in

AMPK’s double-faced role in advanced stages of prostate cancer

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Prostate cancer (PCa) is the second leading cause of cancer deaths in men. Unfortunately, a very limited number of drugs are available for the relapsed and advanced stages of PCa, adding only a few months to survival; therefore, it is vital to develop new drugs. 5´ AMP-activated protein kinase (AMPK) is a master regulator of cell metabolism. It plays a significant role in the metabolism of PCa; hence, it can serve well as a treatment option for the advanced stages of PCa. However, whether this pathway contributes to cancer cell survival or death remains unknown. The present study reviews the possible pathways by which AMPK plays role in the advanced stages of PCa, drug resistance, and metastasis: (1) AMPK has a contradictory role in promoting glycolysis and the Warburg effect which are correlated with cancer stem cells (CSCs) survival and advanced PCa. It exerts its effect by interacting with hypoxia-induced factor 1 (HIF1) α, pyruvate kinase 2 (PKM2), glucose transporter (GLUT) 1 and pyruvate dehydrogenase complex (PDHC), which are key regulators of glycolysis; however, whether it promotes or discourage glycolysis is not conclusive. It can also exert an anti-CSC effect by negative regulation of NANOG and epithelial–mesenchymal transition (EMT) transcription factors, which are the major drivers of CSC maintenance; (2) the regulatory effect of AMPK on autophagy is also noticeable. Androgen receptors’ expression increases AMPK activation through Calcium/calmodulin-dependent protein kinase 2 (CaMKK2) and induces autophagy. In addition, AMPK itself increases autophagy by downregulating the mammalian target of rapamycin complex (mTORC). However, whether increased autophagy inhibits or promotes cell death and drug resistance is contradictory. This study reveals that there are numerous pathways other than cell metabolism by which AMPK exerts its effects in the advanced stages of PCa, making it a priceless treatment target. Finally, we mention some drugs developed to treat the advanced stages of PCa by acting on AMPK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Code availability

Not applicable.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.

    Article  PubMed  Google Scholar 

  2. Zhuo L, Cheng Y, Pan Y, Zong J, Sun W, Xu L, et al. Prostate cancer with bone metastasis in Beijing: an observational study of prevalence, hospital visits and treatment costs using data from an administrative claims database. BMJ Open. 2019;9(6): e028214.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ritch C, Cookson M. Recent trends in the management of advanced prostate cancer. F1000Res. 2018;7:1513.

    Article  CAS  Google Scholar 

  4. Patil N, Gaitonde K. Clinical perspective of prostate cancer. top Magn Reson Imaging. 2016;25(3):103–8.

    Article  PubMed  Google Scholar 

  5. Tennakoon JB, Shi Y, Han JJ, Tsouko E, White MA, Burns AR, et al. Androgens regulate prostate cancer cell growth via an AMPK-PGC-1α-mediated metabolic switch. Oncogene. 2014;33(45):5251–61.

    Article  CAS  PubMed  Google Scholar 

  6. Zadra G, Priolo C, Patnaik A, Loda M. New strategies in prostate cancer: targeting lipogenic pathways and the energy sensor AMPK. Clin Cancer Res. 2010;16(13):3322–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sánchez BG, Bort A, Vara-Ciruelos D, Díaz-Laviada I. Androgen deprivation induces reprogramming of prostate cancer cells to stem-like cells. Cells. 2020;9(6):1441.

    Article  PubMed Central  Google Scholar 

  8. Mamouni K, Kallifatidis G, Lokeshwar BL. Targeting mitochondrial metabolism in prostate cancer with triterpenoids. Int J Mol Sci. 2021;22(5):2466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cai Z, Deng Y, Ye J, Zhuo Y, Liu Z, Liang Y, et al. Aberrant expression of citrate synthase is linked to disease progression and clinical outcome in prostate cancer. Cancer Manag Res. 2020;12:6149–63.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang Z, Wang N, Liu P, Xie X. AMPK and cancer. Exp Suppl. 2016;107:203–26.

    CAS  PubMed  Google Scholar 

  11. Khan AS, Frigo DE. A spatiotemporal hypothesis for the regulation, role, and targeting of AMPK in prostate cancer. Nat Rev Urol. 2017;14(3):164–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chhipa RR, Wu Y, Mohler JL, Ip C. Survival advantage of AMPK activation to androgen-independent prostate cancer cells during energy stress. Cell Signal. 2010;22(10):1554–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao Y, Xingbin H, Liu Y, Dong S, Wen Z, He W, et al. ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol Cancer. 2017;16:79.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mitani T, Minami M, Harada N, Ashida H, Yamaji R. Autophagic degradation of the androgen receptor mediated by increased phosphorylation of p62 suppresses apoptosis in hypoxia. Cell Signal. 2015;27(10):1994–2001.

    Article  CAS  PubMed  Google Scholar 

  15. Saini N, Yang X. Metformin as an anti-cancer agent: actions and mechanisms targeting cancer stem cells. Acta Biochim Biophys Sin (Shanghai). 2018;50(2):133–43.

    Article  CAS  Google Scholar 

  16. Yang YC, Chien MH, Liu HY, Chang YC, Chen CK, Lee WJ, et al. Nuclear translocation of PKM2/AMPK complex sustains cancer stem cell populations under glucose restriction stress. Cancer Lett. 2018;421:28–40.

    Article  CAS  PubMed  Google Scholar 

  17. Robles-Flores M, Moreno-Londoño AP, Castañeda-Patlán MC. Signaling pathways involved in nutrient sensing control in cancer stem cells: an overview. Front Endocrinol. 2021;12(219):627745.

    Article  Google Scholar 

  18. Takayama K-I, Kosaka T, Suzuki T, Hongo H, Oya M, Fujimura T, et al. Subtype-specific collaborative transcription factor networks are promoted by OCT4 in the progression of prostate cancer. Nat Commun. 2021;12(1):3766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guo W, Zhang Z, Li G, Lai X, Gu R, Xu W, et al. Pyruvate kinase M2 promotes prostate cancer metastasis through regulating ERK1/2-COX-2 signaling. Front Oncol. 2020;10: 544288.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhu Z, Tang G, Yan J. MicroRNA-122 regulates docetaxel resistance of prostate cancer cells by regulating PKM2. Exp Ther Med. 2020;20(6):247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hasan D, Gamen E, Abu Tarboush N, Ismail Y, Pak O, Azab B. PKM2 and HIF-1α regulation in prostate cancer cell lines. PLoS ONE. 2018;13(9): e0203745.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mimeault M, Batra SK. Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells. J Cell Mol Med. 2013;17(1):30–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang Q, Han Z, Zhu Y, Chen J, Li W. Role of hypoxia inducible factor-1 in cancer stem cells (Review). Mol Med Rep. 2021;23(1):1.

    CAS  PubMed  Google Scholar 

  24. Jung SN, Yang WK, Kim J, Kim HS, Kim EJ, Yun H, et al. Reactive oxygen species stabilize hypoxia-inducible factor-1 alpha protein and stimulate transcriptional activity via AMP-activated protein kinase in DU145 human prostate cancer cells. Carcinogenesis. 2008;29(4):713–21.

    Article  CAS  PubMed  Google Scholar 

  25. Chang L, Graham PH, Hao J, Ni J, Bucci J, Cozzi PJ, et al. Acquisition of epithelial-mesenchymal transition and cancer stem cell phenotypes is associated with activation of the PI3K/Akt/mTOR pathway in prostate cancer radioresistance. Cell Death Dis. 2013;4(10): e875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dubrovska A, Kim S, Salamone RJ, Walker JR, Maira SM, García-Echeverría C, et al. The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci U S A. 2009;106(1):268–73.

    Article  CAS  PubMed  Google Scholar 

  27. Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene. 2010;29(34):4741–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yoshida GJ, Saya H. EpCAM expression in the prostate cancer makes the difference in the response to growth factors. Biochem Biophys Res Commun. 2014;443(1):239–45.

    Article  CAS  PubMed  Google Scholar 

  29. Skvortsov S, Skvortsova I-I, Tang DG, Dubrovska A. Concise review: prostate cancer stem cells: current understanding. Stem Cells. 2018;36(10):1457–74.

    Article  PubMed  Google Scholar 

  30. Mak P, Leav I, Pursell B, Bae D, Yang X, Taglienti CA, et al. ERbeta impedes prostate cancer EMT by destabilizing HIF-1alpha and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading. Cancer Cell. 2010;17(4):319–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jin W. Role of JAK/STAT3 signaling in the regulation of metastasis, the transition of cancer stem cells, and chemoresistance of cancer by epithelial-mesenchymal transition. Cells. 2020;9(1):217.

    Article  CAS  PubMed Central  Google Scholar 

  32. Hirsch HA, Iliopoulos D, Struhl K. Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proc Natl Acad Sci U S A. 2013;110(3):972–7.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang HH, Guo XL. Combinational strategies of metformin and chemotherapy in cancers. Cancer Chemother Pharmacol. 2016;78(1):13–26.

    Article  CAS  PubMed  Google Scholar 

  34. Wang X, Jin J, Wan F, Zhao L, Chu H, Chen C, et al. AMPK promotes SPOP-mediated NANOG degradation to regulate prostate cancer cell stemness. Dev Cell. 2019;48(3):345-60.e7.

    Article  CAS  PubMed  Google Scholar 

  35. Hart PC, Mao M, de Abreu ALP, Ansenberger-Fricano K, Ekoue DN, Ganini D, et al. MnSOD upregulation sustains the Warburg effect via mitochondrial ROS and AMPK-dependent signalling in cancer. Nat Commun. 2015;6:6053.

    Article  CAS  PubMed  Google Scholar 

  36. Lee YG, Nam Y, Shin KJ, Yoon S, Park WS, Joung JY, et al. Androgen-induced expression of DRP1 regulates mitochondrial metabolic reprogramming in prostate cancer. Cancer Lett. 2020;471:72–87.

    Article  CAS  PubMed  Google Scholar 

  37. Han F, Li C-F, Cai Z, Zhang X, Jin G, Zhang W-N, et al. The critical role of AMPK in driving Akt activation under stress, tumorigenesis and drug resistance. Nat Commun. 2018;9(1):4728.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wu CA, Chao Y, Shiah SG, Lin WW. Nutrient deprivation induces the Warburg effect through ROS/AMPK-dependent activation of pyruvate dehydrogenase kinase. Biochim Biophys Acta. 2013;1833(5):1147–56.

    Article  CAS  PubMed  Google Scholar 

  39. Townsend LK, Weber AJ, Barbeau PA, Holloway GP, Wright DC. Reactive oxygen species-dependent regulation of pyruvate dehydrogenase kinase-4 in white adipose tissue. Am J Physiol Cell Physiol. 2020;318(1):C137–49.

    Article  CAS  PubMed  Google Scholar 

  40. Lin C, Salzillo TC, Bader DA, Wilkenfeld SR, Awad D, Pulliam TL, et al. Prostate cancer energetics and biosynthesis. Adv Exp Med Biol. 2019;1210:185–237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhong Y, Li X, Ji Y, Li X, Li Y, Yu D, et al. Pyruvate dehydrogenase expression is negatively associated with cell stemness and worse clinical outcome in prostate cancers. Oncotarget. 2017;8(8):13344–56.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z, et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab. 2013;17(1):113–24.

    Article  CAS  PubMed  Google Scholar 

  43. Moldogazieva NT, Mokhosoev IM, Terentiev AA. Metabolic heterogeneity of cancer cells: an interplay between HIF-1, GLUTs, and AMPK. Cancers (Basel). 2020;12(4):862.

    Article  CAS  PubMed Central  Google Scholar 

  44. Park HU, Suy S, Danner M, Dailey V, Zhang Y, Li H, et al. AMP-activated protein kinase promotes human prostate cancer cell growth and survival. Mol Cancer Ther. 2009;8(4):733–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nguyen HG, Yang JC, Kung HJ, Shi XB, Tilki D, Lara PN Jr, et al. Targeting autophagy overcomes Enzalutamide resistance in castration-resistant prostate cancer cells and improves therapeutic response in a xenograft model. Oncogene. 2014;33(36):4521–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lin C, Blessing AM, Pulliam TL, Shi Y, Wilkenfeld SR, Han JJ, et al. Inhibition of CAMKK2 impairs autophagy and castration-resistant prostate cancer via suppression of AMPK-ULK1 signaling. bioRxiv. 2020;40:1690–1705.

    Google Scholar 

  47. Chang PC, Wang TY, Chang YT, Chu CY, Lee CL, Hsu HW, et al. Autophagy pathway is required for IL-6 induced neuroendocrine differentiation and chemoresistance of prostate cancer LNCaP cells. PLoS ONE. 2014;9(2): e88556.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lin TP, Chang YT, Lee SY, Campbell M, Wang TC, Shen SH, et al. REST reduction is essential for hypoxia-induced neuroendocrine differentiation of prostate cancer cells by activating autophagy signaling. Oncotarget. 2016;7(18):26137–51.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Quan Z, Li T, Xia Y, Liu J, Du Z, Luo C, et al. PLCɛ maintains the functionality of AR signaling in prostate cancer via an autophagy-dependent mechanism. Cell Death Dis. 2020;11(8):716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Taniguchi K, Ii H, Kageyama S, Takagi H, Chano T, Kawauchi A, et al. Depletion of gamma-glutamylcyclotransferase inhibits cancer cell growth by activating the AMPK-FOXO3a-p21 axis. Biochem Biophys Res Commun. 2019;517(2):238–43.

    Article  CAS  PubMed  Google Scholar 

  51. Taniguchi K, Matsumura K, Ii H, Kageyama S, Ashihara E, Chano T, et al. Depletion of gamma-glutamylcyclotransferase in cancer cells induces autophagy followed by cellular senescence. Am J Cancer Res. 2018;8(4):650–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ruma IMW, Kinoshita R, Tomonobu N, Inoue Y, Kondo E, Yamauchi A, et al. Embigin promotes prostate cancer progression by S100A4-dependent and-independent mechanisms. Cancers (Basel). 2018;10(7):239.

    Article  PubMed Central  Google Scholar 

  53. Grossi V, Lucarelli G, Forte G, Peserico A, Matrone A, Germani A, et al. Loss of STK11 expression is an early event in prostate carcinogenesis and predicts therapeutic response to targeted therapy against MAPK/p38. Autophagy. 2015;11(11):2102–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liao H, Xiao Y, Hu Y, Xiao Y, Yin Z, Liu L, et al. Methylation-induced silencing of miR-34a enhances chemoresistance by directly upregulating ATG4B-induced autophagy through AMPK/mTOR pathway in prostate cancer. Oncol Rep. 2016;35(1):64–72.

    Article  CAS  PubMed  Google Scholar 

  55. Huang Y, Li S, Jia Z, Zhao W, Zhou C, Zhang R, et al. Transient receptor potential melastatin 8 (TRPM8) channel regulates proliferation and migration of breast cancer cells by activating the AMPK-ULK1 pathway to enhance basal autophagy. Front Oncol. 2020;10: 573127.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhu G, Wang X, Yang Z, Cao H, Meng Z, Wang Y, et al. Effects of TRPM8 on the proliferation and angiogenesis of prostate cancer PC-3 cells in vivo. Oncol Lett. 2011;2(6):1213–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu T, Fang Z, Wang G, Shi M, Wang X, Jiang K, et al. Anti-tumor activity of the TRPM8 inhibitor BCTC in prostate cancer DU145 cells. Oncol Lett. 2016;11(1):182–8.

    Article  CAS  PubMed  Google Scholar 

  58. Peng M, Wang Z, Yang Z, Tao L, Liu Q, Yi LU, et al. Overexpression of short TRPM8 variant α promotes cell migration and invasion, and decreases starvation-induced apoptosis in prostate cancer LNCaP cells. Oncol Lett. 2015;10(3):1378–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lin JZ, Wang WW, Hu TT, Zhu GY, Li LN, Zhang CY, et al. FOXM1 contributes to docetaxel resistance in castration-resistant prostate cancer by inducing AMPK/mTOR-mediated autophagy. Cancer Lett. 2020;469:481–9.

    Article  CAS  PubMed  Google Scholar 

  60. Jia J, Zhang HB, Shi Q, Yang C, Ma JB, Jin B, et al. KLF5 downregulation desensitizes castration-resistant prostate cancer cells to docetaxel by increasing BECN1 expression and inducing cell autophagy. Theranostics. 2019;9(19):5464–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li XR, Zhou KQ, Yin Z, Gao YL, Yang X. Knockdown of FBP1 enhances radiosensitivity in prostate cancer cells by activating autophagy. Neoplasma. 2020;67(5):982–91.

    Article  CAS  PubMed  Google Scholar 

  62. Kwon J, Lee Y, Jeong JH, Ryu JH, Kim KI. Inhibition of autophagy sensitizes lignan-induced endoplasmic reticulum stress-mediated cell death. Biochem Biophys Res Commun. 2020;526(2):300–5.

    Article  CAS  PubMed  Google Scholar 

  63. Zhao F, Huang W, Zhang Z, Mao L, Han Y, Yan J, et al. Triptolide induces protective autophagy through activation of the CaMKKβ-AMPK signaling pathway in prostate cancer cells. Oncotarget. 2016;7(5):5366–82.

    Article  PubMed  Google Scholar 

  64. Jayasooriya R, Dilshara MG, Karunarathne W, Molagoda IMN, Choi YH, Kim GY. Camptothecin enhances c-Myc-mediated endoplasmic reticulum stress and leads to autophagy by activating Ca(2+)-mediated AMPK. Food Chem Toxicol. 2018;121:648–56.

    Article  CAS  PubMed  Google Scholar 

  65. Chang WL, Hsu LC, Leu WJ, Chen CS, Guh JH. Repurposing of nitroxoline as a potential anticancer agent against human prostate cancer: a crucial role on AMPK/mTOR signaling pathway and the interplay with Chk2 activation. Oncotarget. 2015;6(37):39806–20.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Draz H, Goldberg AA, Titorenko VI, Tomlinson Guns ES, Safe SH, Sanderson JT. Diindolylmethane and its halogenated derivatives induce protective autophagy in human prostate cancer cells via induction of the oncogenic protein AEG-1 and activation of AMP-activated protein kinase (AMPK). Cell Signal. 2017;40:172–82.

    Article  CAS  PubMed  Google Scholar 

  67. Tao T, Zhao F, Xuan Q, Shen Z, Xiao J, Shen Q. Fenofibrate inhibits the growth of prostate cancer through regulating autophagy and endoplasmic reticulum stress. Biochem Biophys Res Commun. 2018;503(4):2685–9.

    Article  CAS  PubMed  Google Scholar 

  68. Ben Sahra I, Tanti JF, Bost F. The combination of metformin and 2 deoxyglucose inhibits autophagy and induces AMPK-dependent apoptosis in prostate cancer cells. Autophagy. 2010;6(5):670–1.

    Article  PubMed  Google Scholar 

  69. Kim SH, Park EJ, Lee CR, Chun JN, Cho NH, Kim IG, et al. Geraniol induces cooperative interaction of apoptosis and autophagy to elicit cell death in PC-3 prostate cancer cells. Int J Oncol. 2012;40(5):1683–90.

    CAS  PubMed  Google Scholar 

  70. Suh Y, Afaq F, Khan N, Johnson JJ, Khusro FH, Mukhtar H. Fisetin induces autophagic cell death through suppression of mTOR signaling pathway in prostate cancer cells. Carcinogenesis. 2010;31(8):1424–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yun SM, Jung JH, Jeong SJ, Sohn EJ, Kim B, Kim SH. Tanshinone IIA induces autophagic cell death via activation of AMPK and ERK and inhibition of mTOR and p70 S6K in KBM-5 leukemia cells. Phytother Res. 2014;28(3):458–64.

    Article  CAS  PubMed  Google Scholar 

  72. Aryal P, Kim K, Park PH, Ham S, Cho J, Song K. Baicalein induces autophagic cell death through AMPK/ULK1 activation and downregulation of mTORC1 complex components in human cancer cells. Febs j. 2014;281(20):4644–58.

    Article  CAS  PubMed  Google Scholar 

  73. Zhou Z-W, Li X-X, He Z-X, Pan S-T, Yang Y, Zhang X, et al. Induction of apoptosis and autophagy via sirtuin1- and PI3K/Akt/mTOR-mediated pathways by plumbagin in human prostate cancer cells. Drug Des Devel Ther. 2015;9:1511–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Akhtar N, Syed DN, Khan MI, Adhami VM, Mirza B, Mukhtar H. The pentacyclic triterpenoid, plectranthoic acid, a novel activator of AMPK induces apoptotic death in prostate cancer cells. Oncotarget. 2016;7(4):3819–31.

    Article  PubMed  Google Scholar 

  75. Tang X, Jia J, Li F, Liu W, Yang C, Jin B, et al. Salen-Mn compounds induces cell apoptosis in human prostate cancer cells through promoting AMPK activity and cell autophagy. Oncotarget. 2017;8(49):86277–86.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Bort A, Quesada S, Ramos-Torres Á, Gargantilla M, Priego EM, Raynal S, et al. Identification of a novel 2-oxindole fluorinated derivative as in vivo antitumor agent for prostate cancer acting via AMPK activation. Sci Rep. 2018;8(1):4370.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Younis T, Khan MI, Khan MR, Rasul A, Majid M, Adhami VM, et al. Nummularic acid, a triterpenoid, from the medicinal plant Fraxinus xanthoxyloides, induces energy crisis to suppress growth of prostate cancer cells. Mol Carcinog. 2018;57(10):1267–77.

    Article  CAS  PubMed  Google Scholar 

  78. Liu Y, Wang M, Wang D, Li X, Wang W, Lou H, et al. Malformin A1 promotes cell death through induction of apoptosis, necrosis and autophagy in prostate cancer cells. Cancer Chemother Pharmacol. 2016;77(1):63–75.

    Article  CAS  PubMed  Google Scholar 

  79. Yeung ED, Morrison A, Plumeri D, Wang J, Tong C, Yan X, et al. Alternol exerts prostate-selective antitumor effects through modulations of the AMPK signaling pathway. Prostate. 2012;72(2):165–72.

    Article  CAS  PubMed  Google Scholar 

  80. Díaz-Laviada I, Rodríguez-Henche N. The potential antitumor effects of capsaicin. Prog Drug Res. 2014;68:181–208.

    PubMed  Google Scholar 

  81. Cheng K, Liu X, Chen L, Lv JM, Qu FJ, Pan XW, et al. α-Viniferin activates autophagic apoptosis and cell death by reducing glucocorticoid receptor expression in castration-resistant prostate cancer cells. Med Oncol. 2018;35(7):105.

    Article  PubMed  Google Scholar 

  82. Mirkheshti N, Park S, Jiang S, Cropper J, Werner SL, Song CS, et al. Dual targeting of androgen receptor and mTORC1 by salinomycin in prostate cancer. Oncotarget. 2016;7(38):62240–54.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kumar R, Deep G, Wempe MF, Surek J, Kumar A, Agarwal R, et al. Procyanidin B2 3,3″-di-O-gallate induces oxidative stress-mediated cell death in prostate cancer cells via inhibiting MAP kinase phosphatase activity and activating ERK1/2 and AMPK. Mol Carcinog. 2018;57(1):57–69.

    Article  CAS  PubMed  Google Scholar 

  84. Liu J, Zheng L, Wu N, Ma L, Zhong J, Liu G, et al. Oleanolic acid induces metabolic adaptation in cancer cells by activating the AMP-activated protein kinase pathway. J Agric Food Chem. 2014;62(24):5528–37.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No particular source of funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Rezaei.

Ethics declarations

Conflict of interest

None.

Ethical approval

Not applicable.

Consent to participate

All the authors declare their consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharibpoor, F., Kamali Zonouzi, S., Razi, S. et al. AMPK’s double-faced role in advanced stages of prostate cancer. Clin Transl Oncol 24, 2064–2073 (2022). https://doi.org/10.1007/s12094-022-02874-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02874-z

Keywords

Navigation