Skip to main content
Log in

Prostate cancer treatment and the relationship of androgen deprivation therapy to cognitive function

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Prostate cancer is the second most common form of cancer in men. For advanced, high risk prostate cancer, androgen deprivation therapy (ADT) is the preferred treatment and can induce remission, but resistance to ADT brings biochemical recurrence and progression of cancer. ADT brings adverse effects such as erectile dysfunction, decreased libido, and diminished physical strength. It is estimated that between 25 and 50% of men on ADT manifest some form of cognitive dysfunction that may be self-reported or reported by a family member. There is concern that impaired cognitive function with ADT is due to loss of testosterone support. Testosterone and its metabolites are known to possess neuroprotective properties. While a direct causal relationship between ADT and cognitive decline in prostate cancer patients has not been established, this review describes the controversy surrounding the possible connection between ADT and neurocognitive deterioration. The cellular and molecular mechanisms believed to underlie the protection of neuronal integrity by androgens are discussed. Results from animal models and human clinical studies are presented. Finally, we call attention to lifestyle modifications that may minimize cognitive issues in prostate cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  2. Bhanji Y, Isaacs WB, Xu J, Cooney KA. Prostate cancer predisposition. Urol Clin North Am. 2021;48:283–96. https://doi.org/10.1016/j.ucl.2021.03.001.

    Article  PubMed  Google Scholar 

  3. Cózar JM, Hernández C, Miñana B, Morote J, Alvarez-Cubero MJ. The role of prostate-specific antigen in light of new scientific evidence: an update in 2020. Actas Urol Esp. 2021;45:21–9. https://doi.org/10.1016/j.acuro.2020.09.005.

    Article  PubMed  Google Scholar 

  4. Ahmed A, Ali S, Sarkar FH. Advances in androgen receptor targeted therapy for prostate cancer. J Cell Physiol. 2014;229:271–6. https://doi.org/10.1002/jcp.24456.

    Article  CAS  PubMed  Google Scholar 

  5. Perlmutter MA, Lepor H. Androgen deprivation therapy in the treatment of advanced prostate cancer. Rev Urol. 2007;9(Suppl 1):S3–8.

    PubMed  PubMed Central  Google Scholar 

  6. Holland J, Bandelow S, Hogervorst E. Testosterone levels and cognition in elderly men: a review. Maturitas. 2011;69:322–37. https://doi.org/10.1016/j.maturitas.2011.05.012.

    Article  CAS  PubMed  Google Scholar 

  7. Jayadevappa R, Chhatre S, Malkowicz SB, Parikh RB, Guzzo T, Wein AJ. Association between androgen deprivation therapy use and diagnosis of dementia in men with prostate cancer. JAMA Netw Open. 2019;2: e196562. https://doi.org/10.1001/jamanetworkopen.2019.6562.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Alonso-Quiñones H, Stish BJ, Aakre JA, Hagen CE, Petersen RC, Mielke MM. Androgen deprivation therapy use and risk of mild cognitive impairment in prostate cancer patients. Alzheimer Dis Assoc Disord. 2021;35:44–7. https://doi.org/10.1097/WAD.0000000000000415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marandino L, Vignani F, Buttigliero C, Gamba T, Necchi A, Tucci M, et al. Evaluation of cognitive function in trials testing new-generation hormonal therapy in patients with prostate cancer: a systematic review. Cancers (Basel). 2020;12:2568. https://doi.org/10.3390/cancers12092568.

    Article  CAS  Google Scholar 

  10. Andela CD, Matte R, Jazet IM, Zonneveld WC, Schoones JW, Meinders AE. Effect of androgen deprivation therapy on cognitive functioning in men with prostate cancer: a systematic review. Int J Urol. 2021;28:786–98. https://doi.org/10.1111/iju.14596.

    Article  PubMed  Google Scholar 

  11. Welch HG, Albertsen PC. Reconsidering prostate cancer mortality—the future of PSA screening. N Engl J Med. 2020;382:1557–63. https://doi.org/10.1056/NEJMms1914228.

    Article  PubMed  Google Scholar 

  12. Wilt TJ, MacDonald R, Rutks I, Shamliyan TA, Taylor BC, Kane RL. Systematic review: comparative effectiveness and harms of treatments for clinically localized prostate cancer. Ann Int Med. 2008;148:435–48. https://doi.org/10.7326/0003-4819-148-6-200803180-00209.

    Article  PubMed  Google Scholar 

  13. Bill-Axelson A, Holmberg L, Garmo H, Taari K, Busch C, Nordling S, et al. Radical prostatectomy or watchful waiting in prostate cancer—29-year follow-up. N Engl J Med. 2018;379:2319–29. https://doi.org/10.1056/NEJMoa1807801.

    Article  PubMed  Google Scholar 

  14. Carbonara U, Srinath M, Crocerossa F, Ferro M, Cantiello F, Lucarelli G, et al. Robot-assisted radical prostatectomy versus standard laparoscopic radical prostatectomy: an evidence-based analysis of comparative outcomes. World J Urol. 2021. https://doi.org/10.1007/s00345-021-03687-5.

    Article  PubMed  Google Scholar 

  15. Kang SG, Shim JS, Onol F, Bhat KRS, Patel VR. Lessons learned from 12,000 robotic radical prostatectomies: is the journey as important as the outcome? Investig Clin Urol. 2020;61:1–10. https://doi.org/10.4111/icu.2020.61.1.1.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Golbari NM, Katz AE. Salvage therapy options for local prostate cancer recurrence after primary radiotherapy: a literature review. Curr Urol Rep. 2017;18:63. https://doi.org/10.1007/s11934-017-0709-4.

    Article  PubMed  Google Scholar 

  17. Garje R, Chennamadhavuni A, Mott SL, Chambers IM, Gellhaus P, Zakharia Y, et al. Utilization and outcomes of surgical castration in comparison to medical castration in metastatic prostate cancer. Clin Genitourin Cancer. 2020;18:e157–66. https://doi.org/10.1016/j.clgc.2019.09.020.

    Article  PubMed  Google Scholar 

  18. Sountoulides P, Rountos T. Adverse effects of androgen deprivation therapy for prostate cancer: prevention and management. ISRN Urol. 2013;2013:1–8. https://doi.org/10.1155/2013/240108.

    Article  CAS  Google Scholar 

  19. Kishan AU, Shaikh T, Wang PC, Reiter RE, Said J, Raghavan G, et al. Clinical outcomes for patients with Gleason Score 9–10 prostate adenocarcinoma treated with radiotherapy or radical prostatectomy: a multi-institutional comparative analysis. Eur Urol. 2017;71:766–73. https://doi.org/10.1016/j.eururo.2016.06.046.

    Article  PubMed  Google Scholar 

  20. Mateo J, Fizazi K, Gillessen S, Heidenreich A, Perez-Lopez R, Oyen WJG, et al. Managing nonmetastatic castration-resistant prostate cancer. Eur Urol. 2019;75:285–93. https://doi.org/10.1016/j.eururo.2018.07.035.

    Article  PubMed  Google Scholar 

  21. Smith MR, Saad F, Oudard S, Shore N, Fizazi K, Sieber P, et al. Denosumab and bone metastasis-free survival in men with nonmetastatic castration-resistant prostate cancer: exploratory analyses by baseline prostate-specific antigen doubling time. J Clin Oncol. 2013;31:3800–6. https://doi.org/10.1200/JCO.2012.44.6716.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Smith MR, Saad F, Chowdhury S, Oudard S, Hadaschik BA, Graff JN, et al. Apalutamide treatment and metastasis-free survival in prostate cancer. N Engl J Med. 2018;378:1408–18. https://doi.org/10.1056/NEJMoa1715546.

    Article  CAS  PubMed  Google Scholar 

  23. Hussain M, Fizazi K, Saad F, Rathenborg P, Shore N, Ubirajara F, et al. Enzalutamide in men with nonmetastatic, castration-resistant prostate cancer. N Engl J Med. 2018;378:2465–74. https://doi.org/10.1056/NEJMoa1800536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Armstrong AJ, Szmulewitz RZ, Petrylak DP, Holzbeierlein J, Villers A, Azad A, et al. ARCHES: a randomized, phase III study of androgen deprivation therapy with enzalutamide or placebo in men with metastatic hormone-sensitive prostate cancer. J Clin Oncol. 2019;37:2974–86. https://doi.org/10.1200/JCO.19.00799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fizazi K, Shore N, Tammela TL, Ulys A, Vjaters E, Polyakov S, ARAMIS Investigators, et al. Darolutamide in nonmetastatic, castration-resistant prostate cancer. N Engl J Med. 2019;380:1235–46. https://doi.org/10.1056/NEJMoa1815671.

    Article  CAS  PubMed  Google Scholar 

  26. O’Donnell A, Judson I, Dowsett M, Raynaud F, Dearnaley D, Mason M, et al. Hormonal impact of the 17alpha-hydroxylase/C(17,20)-lyase inhibitor abiraterone acetate (CB7630) in patients with prostate cancer. Br J Cancer. 2004;90:2317–25. https://doi.org/10.1038/sj.bjc.6601879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shpilsky J, Stevens J, Bubley G. An up-to-date evaluation of abiraterone for the treatment of prostate cancer. Expert Opin Pharmacother. 2021. https://doi.org/10.1080/14656566.2021.1915287.

    Article  PubMed  Google Scholar 

  28. Fizazi K, Scher HI, Molina A, Logothetis CJ, Chi KN, Jones RJ, et al. Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol. 2012;13:983–92. https://doi.org/10.1016/S1470-2045(12)70379-0.

    Article  CAS  PubMed  Google Scholar 

  29. Paudel R, Ferrante S, Qi J, Dunn RL, Berry DL, Semerjian A, Michigan Urological Surgery Improvement Collaborative, et al. Patient preferences and treatment decisions for prostate cancer: results from a statewide urological quality improvement collaborative. Urology. 2021;155:55–61. https://doi.org/10.1016/j.urology.2021.04.020.

    Article  PubMed  Google Scholar 

  30. López-Campos F, González-San Segundo C, Conde-Moreno AJ, Couñago F. Metastatic hormone-sensitive prostate cancer: how should it be treated? World J Clin Oncol. 2021;12:43–9. https://doi.org/10.5306/wjco.v12.i2.43.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mhaouty-Kodja S. Role of the androgen receptor in the central nervous system. Mol Cell Endocrinol. 2018;465:103–12. https://doi.org/10.1016/j.mce.2017.08.001.

    Article  CAS  PubMed  Google Scholar 

  32. Grimm A, Schmitt K, Lang UE, Mensah-Nyagan AG, Eckert A. Improvement of neuronal bioenergetics by neurosteroids: implications for age-related neurodegenerative disorders. Biochim Biophys Acta. 2014;1842:2427–38. https://doi.org/10.1016/j.bbadis.2014.09.013.

    Article  CAS  PubMed  Google Scholar 

  33. Ishihara Y, Fujitani N, Sakurai H, Takemoto T, Ikeda-Ishihara N, Mori-Yasumoto K, et al. Effects of sex steroid hormones and their metabolites on neuronal injury caused by oxygen-glucose deprivation/reoxygenation in organotypic hippocampal slice cultures. Steroids. 2016;113:71–7. https://doi.org/10.1016/j.steroids.2016.06.004.

    Article  CAS  PubMed  Google Scholar 

  34. Son SW, Lee JS, Kim HG, Kim DW, Ahn YC, Son CG. Testosterone depletion increases the susceptibility of brain tissue to oxidative damage in a restraint stress mouse model. J Neurochem. 2016;136:106–17. https://doi.org/10.1111/jnc.13371.

    Article  PubMed  Google Scholar 

  35. Beyenburg S, Watzka M, Clusmann H, Blumcke I, Bidlingmaier F, Elger CE, et al. Androgen receptor mRNA expression in the human hippocampus. Neurosci Lett. 2000;294:25–8. https://doi.org/10.1016/s0304-3940(00)01542-1.

    Article  CAS  PubMed  Google Scholar 

  36. Ou J, Wu Y, Hu Y, Gao X, Li H, Tobler PN. Testosterone reduces generosity through cortical and subcortical mechanisms. Proc Natl Acad Sci USA. 2021;23(118):12. https://doi.org/10.1073/pnas.2021745118.

    Article  CAS  Google Scholar 

  37. Choi JC, Park YH, Park SK, Lee JS, Kim J, Choi JI, et al. Testosterone effects on pain and brain activation patterns. Acta Anaesthesiol Scand. 2017;61:668–75. https://doi.org/10.1111/aas.12908.

    Article  CAS  PubMed  Google Scholar 

  38. Knutson KM, Gotts SJ, Wassermann EM, Lewis JD. Testosterone and resting state connectivity of the parahippocampal gyrus in men with history of deployment-related mild traumatic brain injury. Mil Med. 2020;185:e1750–8. https://doi.org/10.1093/milmed/usaa142.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang C, Swerdloff RS, Iranmanesh A, Dobs A, Snyder PJ, Cunningham G, et al. Transdermal testosterone gel improves sexual function, mood, muscle strength, and body composition parameters in hypogonadal men. J Clin Endocrinol Metab. 2000;85:2839–53.

    CAS  PubMed  Google Scholar 

  40. Carrier N, Saland SK, Duclot F, He H, Mercer R, Kabbaj M. The anxiolytic and antidepressant-like effects of testosterone and estrogen in gonadectomized male rats. Biol Psychiatry. 2015;78:259–69. https://doi.org/10.1016/j.biopsych.2014.12.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kanayama G, Hudson JI, DeLuca J, Isaacs S, Baggish A, Weiner R, et al. Prolonged hypogonadism in males following withdrawal from anabolic-androgenic steroids: an under-recognized problem. Addiction. 2015;110:823–31.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Edinger KL, Frye CA. Androgens’ performance-enhancing effects in the inhibitory avoidance and water maze tasks may involve actions at intracellular androgen receptors in the dorsal hippocampus. Neurobiol Learn Mem. 2007;87:201–8.

    Article  CAS  PubMed  Google Scholar 

  43. Seyedreza P, Alireza MN, Seyedebrahim H. Role of testosterone in memory impairment of Alzheimer disease induced by streptozotocin in male rats. Daru. 2012;20:98. https://doi.org/10.1186/2008-2231-20-98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rizk A, Robertson J, Raber J. Behavioral performance of tfm mice supports the beneficial role of androgen receptors in spatial learning and memory. Brain Res. 2005;1034:132–8.

    Article  CAS  PubMed  Google Scholar 

  45. Naghdi N, Majlessi N, Bozorgmehr T. The effect of intrahippocampal injection of testosterone enanthate (an androgen receptor agonist) and anisomycin (protein synthesis inhibitor) on spatial learning and memory in adult, male rats. Behav Brain Res. 2005;156:263–8.

    Article  CAS  PubMed  Google Scholar 

  46. Hatanaka Y, Hojo Y, Mukai H, Murakami G, Komatsuzaki Y, Kim J, et al. Rapid increase of spines by dihydrotestosterone and testosterone in hippocampal neurons: dependence on synaptic androgen receptor and kinase networks. Brain Res. 2015;1621:121–32.

    Article  CAS  PubMed  Google Scholar 

  47. Mueller SC, Verwilst T, Van Branteghem A, T’Sjoen G, Cools M. The contribution of the androgen receptor (AR) in human spatial learning and memory: a study in women with complete androgen insensitivity syndrome (CAIS). Horm Behav. 2016;78:121–6.

    Article  CAS  PubMed  Google Scholar 

  48. Carson CC. Effects of testosterone on cognition and mood in male patients with mild Alzheimer’s disease and elderly men. Curr Urol Rep. 2006;7:471–2.

    Article  PubMed  Google Scholar 

  49. Lee HH, Park S, Joung JY, Kim SH. How does androgen deprivation therapy affect mental health including cognitive dysfunction in patients with prostate cancer? World J Mens Health. 2020. https://doi.org/10.5534/wjmh.200092.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Buskbjerg CR, Amidi A, Buus S, Gravholt CH, HadiHosseini SM, Zachariae R. Androgen deprivation therapy and cognitive decline-associations with brain connectomes, endocrine status, and risk genotypes. Prostate Cancer Prostatic Dis. 2021. https://doi.org/10.1038/s41391-021-00398-1.

    Article  PubMed  Google Scholar 

  51. Tae BS, Jeon BJ, Shin SH, Choi H, Bae JH, Park JY. Correlation of androgen deprivation therapy with cognitive dysfunction in patients with prostate cancer: a nationwide population-based study using the National Health Insurance Service Database. Cancer Res Treat. 2019;51:593–602.

    Article  CAS  PubMed  Google Scholar 

  52. Treanor CJ, Li J, Donnelly M. Cognitive impairment among prostate cancer patients: an overview of reviews. Eur J Cancer Care. 2016;26:e12642.

    Article  Google Scholar 

  53. Sun M, Cole AP, Hanna N, Mucci LA, Berry DL, Basaria S, et al. Cognitive impairment in men with prostate cancer treated with androgen deprivation therapy: a systematic review and meta-analysis. J Urol. 2018;199:1417–25.

    Article  PubMed  Google Scholar 

  54. Kluger J, Roy A, Chao HH. Androgen deprivation therapy and cognitive function in prostate cancer. Curr Oncol Rep. 2020;22:24.

    Article  PubMed  Google Scholar 

  55. Gunlusoy B, Ceylan Y, Koskderelioglu A, Gedizlioglu M, Degirmenci T, Ortan P, et al. Cognitive effects of androgen deprivation therapy in men with advanced prostate cancer. Urology. 2017;103:167–72.

    Article  PubMed  Google Scholar 

  56. Hsu B, Cumming RG, Waite LM, Blyth FM, Naganathan V, Le Couteur DG, et al. Longitudinal relationships between reproductive hormones and cognitive decline in older men: the concord health and ageing in men project. J Clin Endocrinol Metab. 2015;100:2223–30. https://doi.org/10.1210/jc.2015-1016.

    Article  CAS  PubMed  Google Scholar 

  57. Lv W, Du N, Liu Y, Fan X, Wang Y, Jia X, et al. Low testosterone level and risk of Alzheimer’s disease in the elderly men: a systematic review and meta-analysis. Mol Neurobiol. 2016;53:2679–84.

    Article  CAS  PubMed  Google Scholar 

  58. McGinty HL, Phillips KM, Jim HS, Cessna JM, Asvat Y, Cases MG, et al. Cognitive functioning in men receiving androgen deprivation therapy for prostate cancer: a systematic review and meta-analysis. Support Care Cancer. 2014;22:2271–80.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sánchez-Martínez V, Buigues C, Navarro-Martínez R, García-Villodre L, Jeghalef N, Serrano-Carrascosa M, et al. Analysis of brain functions in men with prostate cancer under androgen deprivation therapy: a one-year longitudinal study. Life (Basel). 2021;10(11):227.

    Google Scholar 

  60. Cinar O, Turunc T, Kazaz IO, Yildirim O, Deliktas H, Cihan A, et al. Effects of androgen deprivation therapy on cognitive functions in patients with metastatic prostate cancer: a multicentric, prospective study of the Society of Urological Surgery Andrology group. Int J Clin Pract. 2021;75:e14095.

    Article  CAS  PubMed  Google Scholar 

  61. Salminen EK, Portin RI, Koskinen A, Helenius H, Nurmi M. Associations between serum testosterone fall and cognitive function in prostate cancer patients. Clin Cancer Res. 2004;10:7575–82.

    Article  CAS  PubMed  Google Scholar 

  62. Rosario ER, Pike CJ. Androgen regulation of β-amyloid protein and the risk of Alzheimer’s disease. Brain Res Rev. 2008;57:444–53.

    Article  CAS  PubMed  Google Scholar 

  63. Yan XS, Yang ZJ, Jia JX, Song W, Fang X, Cai ZP, et al. Protective mechanism of testosterone on cognitive impairment in a rat model of Alzheimer’s disease. Neural Regen Res. 2019;14:649–57.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hammond J, Le Q, Goodyer C, Gelfand M, Trifor M, LeBlanc A. Testosterone-mediated neuroprotection through the androgen receptor in human primary neurons. J Neurochem. 2001;77:1319–26.

    Article  CAS  PubMed  Google Scholar 

  65. Thomas P. Membrane androgen receptors unrelated to nuclear steroid receptors. Endocrinology. 2019;160:772–81.

    Article  CAS  PubMed  Google Scholar 

  66. Garza-Contreras J, Duong P, Snyder BD, Schreihofer DA, Cunningham RL. Presence of Androgen Receptor Variant in Neuronal Lipid Rafts. eNeuro. 2017;4(4):109–17.

    Article  Google Scholar 

  67. Labrie F. Intracrinology. Mol Cell Endocrinol. 1991;78:C113–8.

    Article  CAS  PubMed  Google Scholar 

  68. Boutin S, Roy J, Maltais R, Poirier D. Formation of 5α-dihydrotestosterone from 5α-androstane-3α,17β-diol in prostate cancer LAPC-4 cells—identifying inhibitors of non-classical pathways producing the most potent androgen. Bioorg Med Chem Lett. 2020;30: 126783. https://doi.org/10.1016/j.bmcl.2019.126783.

    Article  CAS  PubMed  Google Scholar 

  69. Vis AN, Schröder FH. Key targets of hormonal treatment of prostate cancer. Part 2: the androgen receptor and 5alpha-reductase. BJU Int. 2009;104:1191–7.

    Article  CAS  PubMed  Google Scholar 

  70. AzhagiyaSingam ER, Tachachartvanich P, La Merrill MA, Smith MT, Durkin KA. Structural dynamics of agonist and antagonist binding to the androgen receptor. J Phys Chem B. 2019;123:7657–66.

    Article  CAS  Google Scholar 

  71. Matsumoto A. Hormonally induced neuronal plasticity in the adult motoneurons. Brain Res Bull. 1997;44:539–47.

    Article  CAS  PubMed  Google Scholar 

  72. Leranth C, Petnehazy O, MacLusky NJ. Gonadal hormones affect spine synaptic density in the CA1 hippocampal subfield of male rats. J Neurosci. 2003;23:1588–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pan W, Han S, Kang L, Li S, Du J, Cui H. Effects of dihydrotestosterone on synaptic plasticity of the hippocampus in mild cognitive impairment male SAMP8 mice. Exp Ther Med. 2016;12:1455–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lim D, Flicker L, Dharamarajan A, Martins RN. Can testosterone replacement decrease the memory problem of old age? Med Hypotheses. 2003;60:893–6. https://doi.org/10.1016/s0306-9877(03)00072-0.

    Article  CAS  PubMed  Google Scholar 

  75. Cherrier MM, Asthana SM, Plymate SM, Baker L, Matsumoto AM, Peskind E, et al. Testosterone supplementation improves spatial and verbal memory in healthy older men. Neurology. 2001;57:80–8.

    Article  CAS  PubMed  Google Scholar 

  76. Ahlbom E, Prins GS, Ceccatelli S. Testosterone protects cerebellar granule cells from oxidative stress-induced cell death through a receptor mediated mechanism. Brain Res. 2001;892:255–62.

    Article  CAS  PubMed  Google Scholar 

  77. Muthu SJ, Seppan P. Apoptosis in hippocampal tissue induced by oxidative stress in testosterone deprived male rats. Aging Male. 2020;23:1598–610.

    Article  PubMed  Google Scholar 

  78. Nguyen TV, Jayaraman A, Quaglino A, Pike CJ. Androgens selectively protect against apoptosis in hippocampal neurons. J Neuroendocrinol. 2010;22:1013–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Crawford ED, Schally AV, Pinthus JH, Block NL, Rick FG, Garnick MB, et al. The potential role of follicle-stimulating hormone in the cardiovascular, metabolic, skeletal, and cognitive effects associated with androgen deprivation therapy. Urol Oncol. 2017;35:183–91.

    Article  CAS  PubMed  Google Scholar 

  80. Verdile G, Laws SM, Henley D, Ames D, Bush AI, Ellis KA, et al. Associations between gonadotropins, testosterone and β amyloid in men at risk of Alzheimer’s disease. Mol Psychiatry. 2014;19:69–75.

    Article  CAS  PubMed  Google Scholar 

  81. Kulichikhin KY, Fedotov SA, Rubel MS, Zalutskaya NM, Zobnina AE, Malikova OA, et al. Development of molecular tools for diagnosis of Alzheimer’s disease that are based on detection of amyloidogenic proteins. Prion. 2021;15:56–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lau CF, Ho YS, Hung CH, Wuwongse S, Poon CH, Chiu K, et al. Protective effects of testosterone on presynaptic terminals against oligomeric β-amyloid peptide in primary culture of hippocampal neurons. Biomed Res Int. 2014;2014:103906.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Yao M, Nguyen TV, Rosario ER, Ramsden M, Pike CJ. Androgens regulate neprilysin expression: role in reducing beta-amyloid levels. J Neurochem. 2008;105:2477–88.

    Article  CAS  PubMed  Google Scholar 

  84. Kanemitsu H, Tomiyama T, Mori H. Human neprilysin is capable of degrading amyloid β peptide not only in the monomeric form but also the pathological oligomeric form. Neurosci Lett. 2003;350:113–6.

    Article  CAS  PubMed  Google Scholar 

  85. Voskobiynyk Y, Roth JR, Cochran JN, Rush T, Carullo NV, Mesina JS, et al. Alzheimer’s disease risk gene BIN1 induces Tau-dependent network hyperexcitability. Elife. 2020;13(9): e57354. https://doi.org/10.7554/eLife.57354.

    Article  Google Scholar 

  86. Lehrer S, Rheinstein PH. Alzheimer gene BIN1 may simultaneously influence dementia risk and androgen deprivation therapy dosage in prostate cancer. Am J Clin Oncol. 2020;43:685–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cheung AS, Hoermann R, Dupuis P, Joon DL, Zajac JD, Grossmann M. Relationships between insulin resistance and frailty with body composition and testosterone in men undergoing androgen deprivation therapy for prostate cancer. Eur J Endocrinol. 2016;175:229–37.

    Article  CAS  PubMed  Google Scholar 

  88. Saylor PJ, Smith MR. Metabolic complications of androgen deprivation therapy for prostate cancer. J Urol. 2013;189:S34-42.

    Article  CAS  PubMed  Google Scholar 

  89. Thomas HR, Chen MH, D’Amico AV, Bennett CL, Kattan MW, Sartor O, et al. Association between androgen deprivation therapy and patient-reported depression in men with recurrent prostate cancer. Clin Genitourin Cancer. 2018;16:313–7.

    Article  PubMed  Google Scholar 

  90. Wang L, Zhou Y, Chen D, Lee TH. Peptidyl-prolyl cis/trans isomerase Pin1 and Alzheimer’s disease. Front Cell Dev Biol. 2020;8:355. https://doi.org/10.3389/fcell.2020.00355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lanni C, Masi M, Racchi M, Govoni S. Cancer and Alzheimer’s disease inverse relationship: an age-associated diverging derailment of shared pathways. Mol Psychiatry. 2021;26:280–95.

    Article  CAS  PubMed  Google Scholar 

  92. Launer BM, Lloyd GL. Sociodemographic index and global trends in prostate cancer: 1990–2017. Prostate. 2021;81:825–31.

    Article  PubMed  Google Scholar 

  93. Eliasson L, de Freitas HM, Dearden L, Calimlim B, Lloyd AJ. Patients’ preferences for the treatment of metastatic castrate-resistant prostate cancer: a discrete choice experiment. Clin Ther. 2017;39:723–37.

    Article  PubMed  Google Scholar 

  94. Sharp AM, Lertphinyowong S, Yee SS, Paredes D, Gelfond J, Johnson-Pais TL, et al. Vortioxetine reverses medial prefrontal cortex-mediated cognitive deficits in male rats induced by castration as a model of androgen deprivation therapy for prostate cancer. Psychopharmacology. 2019;236:3183–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ahmadi H, Daneshmand S. Androgen deprivation therapy: evidence-based management of side effects. BJU Int. 2013;111:543–8.

    Article  CAS  PubMed  Google Scholar 

  96. Hershman DL, Unger JM, Wright JD, Ramsey S, Till C, Tangen CM, et al. Adverse health events following intermittent and continuous androgen deprivation in patients with metastatic prostate cancer. JAMA Oncol. 2016;2:453–61.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Focht BC, Lucas AR, Grainger E, Simpson C, Fairman CM, Thomas-Ahner JM, et al. Effects of a group-mediated cognitive behavioral lifestyle intervention on select social cognitive outcomes in prostate cancer patients undergoing androgen deprivation therapy. Integr Cancer Ther. 2019;18:1534735419893764.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wibowo E, Wassersug RJ, Robinson JW, Matthew A, McLeod D, Walker LM. How are patients with prostate cancer managing androgen deprivation therapy side effects? Clin Genitourin Cancer. 2019;17:e408–19.

    Article  PubMed  Google Scholar 

  99. Cormie P, Zopf EM. Exercise medicine for the management of androgen deprivation therapy-related side effects in prostate cancer. Urol Oncol. 2020;38:62–70.

    Article  PubMed  Google Scholar 

  100. Garland SN, Savard J, Eisel SL, Wassersug RJ, Rockwood NJ, Thoms J, et al. A 2-year prospective analysis of insomnia as a mediator of the relationship between androgen deprivation therapy and perceived cognitive function in men with prostate cancer. Cancer. 2021. https://doi.org/10.1002/cncr.33850.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mr. Robert Buescher and Mr. Edmonds Bafford for their support.

Funding

This work was supported by the Alzheimer’s Foundation of America (Award # (AWD00004772) and The Herb and Evelyn Abrams Family Amyloid Research Fund.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: ABR, AP, AEK. Writing—original draft: ABR, DJG, US, ADG. Writing-review and editing: ABR, AP, AEK, DJG, US, ADG.

Corresponding author

Correspondence to A. B. Reiss.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This study does not contain any work with human participants conducted by any of the authors.

Informed consent

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reiss, A.B., Saeedullah, U., Grossfeld, D.J. et al. Prostate cancer treatment and the relationship of androgen deprivation therapy to cognitive function. Clin Transl Oncol 24, 733–741 (2022). https://doi.org/10.1007/s12094-021-02727-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02727-1

Keywords

Navigation