Skip to main content

Advertisement

Log in

Silencing IKBKE inhibits the migration and invasion of glioblastoma by promoting Snail1 degradation

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

Glioblastoma multiforme (GBM) is one of the most common malignant brain tumors in adults and has high mortality and relapse rates. Over the past few years, great advances have been made in the diagnosis and treatment of GBM, but unfortunately, the five-year overall survival rate of GBM patients is approximately 5.1%. Inhibitor of nuclear factor kappa-B kinase subunit epsilon (IKBKE) is a major oncogenic protein in tumors and can promote evil development of GBM. Snail1, a key inducer of the epithelial-mesenchymal transition (EMT) transcription factor, is subjected to ubiquitination and degradation, but the mechanism by which Snail1 is stabilized in tumors remains unclear. Our study aimed to investigate the mechanism of IKBKE regulating Snail1 in GBM.

Methods

First, we analyzed the correlation between the expression of IKBKE and the tumor grade and prognosis through public databases and laboratory specimen libraries. Second, immunohistochemistry (IHC) and western blot were used to detect the correlation between IKBKE and Snail expression in glioma samples and cell lines. Western blot and immunofluorescence (IF) experiments were used to detect the quality and distribution of IKBKE and Snail1 proteins. Third, In situ animal model of intracranial glioma to detect the regulatory effect of IKBKE on intracranial tumors.

Results

In this study, Our study reveals a new connection between IKBKE and Snail1, where IKBKE can directly bind to Snail1, translocate Snail1 into the nucleus from the cytoplasm. Downregulation of IKBKE results in Snail1 destabilization and impairs the tumor cell migration and invasion capabilities.

Conclusion

Our studies suggest that the IKBKE-Snail1 axis may serve as a potential therapeutic target for GBM treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lu L, Zhang S, Li C, Zhou C, Li D, Liu P, et al. Cryptotanshinone inhibits human glioma cell proliferation in vitro and in vivo through SHP-2-dependent inhibition of STAT3 activation. Cell Death Dis. 2017;8(5): e2767.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ciaglia E, Abate M, Laezza C, Pisanti S, Vitale M, Seneca V, et al. Antiglioma effects of N6-isopentenyladenosine, an endogenous isoprenoid end product, through the downregulation of epidermal growth factor receptor. Int J Cancer. 2017;140(4):959–72.

    CAS  PubMed  Google Scholar 

  3. Omuro A, DeAngelis LM. Glioblastoma and other malignant gliomas: a clinical review. JAMA. 2013;310(17):1842–50.

    CAS  PubMed  Google Scholar 

  4. Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro Oncol. 2015;17(suppl 4):v1–62.

    Google Scholar 

  5. Zhang J, Zhang C, Cui J, Ou J, Han J, Qin Y, et al. TRIM45 functions as a tumor suppressor in the brain via its E3 ligase activity by stabilizing p53 through K63-linked ubiquitination. Cell Death Dis. 2017;8(5): e2831.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang F, Xiang S, Cao Y, Li M, Ma Q, Liang H, et al. EIF3D promotes gallbladder cancer development by stabilizing GRK2 kinase and activating PI3K-AKT signaling pathway. Cell Death Dis. 2017;8(6): e2868.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu Y, Wang Y, Lin Y, Liu Y, Wang Y, Jia J, et al. Dub3 inhibition suppresses breast cancer invasion and metastasis by promoting Snail1 degradation. Nat Commun. 2017. https://doi.org/10.1038/ncomms14228.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu B, Dong H, Lin X, Yang X, Yue X, Yang J, et al. RND3 promotes Snail 1 protein degradation and inhibits glioblastoma cell migration and invasion. Oncotarget. 2016;7(50):82411–23.

    PubMed  PubMed Central  Google Scholar 

  9. Wanshura LEC, Galvin KE, Ye H, Fernandez-Zapico ME, Wetmore C. Sequential activation of Snail1 and N-Myc modulates sonic hedgehog-induced transformation of neural cells. Cancer Res. 2011;71(15):5336–45.

    CAS  Google Scholar 

  10. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, et al. Dual regulation of Snail by GSK-3β-mediated phosphorylation in control of epithelial–mesenchymal transition. Nat Cell Biol. 2004;6(10):931–40.

    CAS  PubMed  Google Scholar 

  11. Zheng H, Shen M, Zha Y, Li W, Wei Y, Blanco MA, et al. PKD1 phosphorylation-dependent degradation of SNAIL by SCF-FBXO11 regulates epithelial–mesenchymal transition and metastasis. Cancer Cell. 2014;26(3):358–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Viñas-Castells R, Beltran M, Valls G, Gómez I, García JM, Montserrat-Sentís B, et al. The Hypoxia-controlled FBXL14 ubiquitin ligase targets SNAIL1 for proteasome degradation. J Biol Chem. 2010;285(6):3794–805.

    PubMed  Google Scholar 

  13. Sandling JK, Garnier S, Sigurdsson S, Wang C, Nordmark G, Gunnarsson I, et al. A candidate gene study of the type I interferon pathway implicates IKBKE and IL8 as risk loci for SLE. Eur J Hum Genet. 2011;19(4):479–84.

    CAS  PubMed  Google Scholar 

  14. Zhang Y, Guan H, Li J, Fang Z, Chen W, Li F. Amlexanox suppresses osteoclastogenesis and prevents ovariectomy-induced bone loss. Sci Rep. 2015. https://doi.org/10.1038/srep13575.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Reilly SM, Chiang S, Decker SJ, Chang L, Uhm M, Larsen MJ, et al. An inhibitor of the protein kinases TBK1 and IKK-ɛ improves obesity-related metabolic dysfunctions in mice. Nat Med. 2013;19(3):313–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Scheja L, Heese B, Seedorf K. Beneficial effects of IKKε-deficiency on body weight and insulin sensitivity are lost in high fat diet-induced obesity in mice. Biochem Bioph Res Commun. 2011;407(2):288–94.

    CAS  Google Scholar 

  17. Corr M, Boyle DL, Ronacher L, Flores N, Firestein GS. Synergistic benefit in inflammatory arthritis by targeting I B kinase and interferon. Ann Rheum Dis. 2009;68(2):257–63.

    CAS  PubMed  Google Scholar 

  18. Bulek K, Liu C, Swaidani S, Wang L, Page RC, Gulen MF, et al. The inducible kinase IKKi is required for IL-17-dependent signaling associated with neutrophilia and pulmonary inflammation. Nat Immunol. 2011;12(9):844–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Moser CV, Kynast K, Baatz K, Russe OQ, Ferreiros N, Costiuk H, et al. The protein kinase IKKepsilon is a potential target for the treatment of inflammatory hyperalgesia. J Immunol. 2011;187(5):2617–25.

    PubMed  Google Scholar 

  20. Boehm JS, Zhao JJ, Yao J, Kim SY, Firestein R, Dunn IF, et al. Integrative genomic approaches identify IKBKE as a breast cancer oncogene. Cell. 2007;129(6):1065–79.

    CAS  PubMed  Google Scholar 

  21. Guo JP, Shu SK, He L, Lee YC, Kruk PA, Grenman S, et al. Deregulation of IKBKE is associated with tumor progression, poor prognosis, and cisplatin resistance in ovarian cancer. Am J Pathol. 2009;175(1):324–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Péant B, Diallo J, Dufour F, Le Page C, Delvoye N, Saad F, et al. Over-expression of IκB-kinase-ε (IKKε/IKKi) induces secretion of inflammatory cytokines in prostate cancer cell lines. Prostate. 2009;69(7):706–18.

    PubMed  Google Scholar 

  23. Guan H, Zhang H, Cai J, Wu J, Yuan J, Li J, et al. IKBKE is over-expressed in glioma and contributes to resistance of glioma cells to apoptosis via activating NF-κB. J Pathol. 2011;223(3):436–45.

    CAS  PubMed  Google Scholar 

  24. Li H, Chen L, Zhang A, Wang G, Han L, Yu K, et al. Silencing of IKKepsilon using siRNA inhibits proliferation and invasion of glioma cells in vitro and in vivo. Int J Oncol. 2012;41(1):169–78.

    CAS  PubMed  Google Scholar 

  25. Adli M, Baldwin AS. IKK-i/IKKepsilon controls constitutive, cancer cell-associated NF-kappaB activity via regulation of Ser-536 p65/RelA phosphorylation. J Biol Chem. 2006;281(37):26976–84.

    CAS  PubMed  Google Scholar 

  26. Sgarbanti M, Marsili G, Remoli AL, Stellacci E, Mai A, Rotili D, et al. IkappaB kinase epsilon targets interferon regulatory factor 1 in activated T lymphocytes. Mol Cell Biol. 2014;34(6):1054–65.

    PubMed  PubMed Central  Google Scholar 

  27. Hutti JE, Shen RR, Abbott DW, Zhou AY, Sprott KM, Asara JM, et al. Phosphorylation of the tumor suppressor CYLD by the breast cancer oncogene IKKepsilon promotes cell transformation. Mol Cell. 2009;34(4):461–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tenoever BR, Ng SL, Chua MA, McWhirter SM, Garcia-Sastre A, Maniatis T. Multiple functions of the IKK-related kinase IKKepsilon in interferon-mediated antiviral immunity. Science. 2007;315(5816):1274–8.

    CAS  PubMed  Google Scholar 

  29. Ng SL, Friedman BA, Schmid S, Gertz J, Myers RM, Tenoever BR, et al. IkappaB kinase epsilon (IKK(epsilon)) regulates the balance between type I and type II interferon responses. Proc Natl Acad Sci USA. 2011;108(52):21170–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sankar S, Chan H, Romanow WJ, Li J, Bates RJ. IKK-i signals through IRF3 and NFκB to mediate the production of inflammatory cytokines. Cell Signal. 2006;18(7):982–93.

    CAS  PubMed  Google Scholar 

  31. Barbie TU, Alexe G, Aref AR, Li S, Zhu Z, Zhang X, et al. Targeting an IKBKE cytokine network impairs triple-negative breast cancer growth. J Clin Invest. 2014;124(12):5411–23.

    PubMed  PubMed Central  Google Scholar 

  32. Xie X, Zhang D, Zhao B, Lu MK, You M, Condorelli G, et al. I B kinase and TANK-binding kinase 1 activate AKT by direct phosphorylation. Proc Natl Acad Sci USA. 2011;108(16):6474–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu Y, Lu J, Zhang Z, Zhu L, Dong S, Guo G, et al. Amlexanox, a selective inhibitor of IKBKE, generates anti-tumoral effects by disrupting the Hippo pathway in human glioblastoma cell lines. Cell Death Dis. 2017;8(8): e3022.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Myung J, Cho B, Kim Y, Park S. Snail and Cox-2 expressions are associated with WHO tumor grade and survival rate of patients with gliomas. Neuropathology. 2010;30(3):224–31.

    PubMed  Google Scholar 

  36. Sun M, Song L, Zhou T, Gillespie GY, Jope RS. The role of DDX3 in regulating Snail. Biochim Biophys Acta. 2011;1813(3):438–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. House CD, Grajales V, Ozaki M, Jordan E, Wubneh H, Kimble DC, et al. IΚΚε cooperates with either MEK or non-canonical NF-kB driving growth of triple-negative breast cancer cells in different contexts. BMC Cancer. 2018. https://doi.org/10.1186/s12885-018-4507-2.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Orlova Z, Pruefer F, Castro-Oropeza R, Ordaz-Ramos A, Zampedri C, Maldonado V, et al. IKKepsilon regulates the breast cancer stem cell phenotype. Biochim Biophys Acta Mol Cell Res. 2019;1866(4):598–611.

    CAS  PubMed  Google Scholar 

  39. Williams V, Grosset AA, Zamorano CN, St-Pierre Y, Sylvestre MP, Gaboury L, et al. Detection of IKKepsilon by immunohistochemistry in primary breast cancer: association with EGFR expression and absence of lymph node metastasis. BMC Cancer. 2017;17(1):356.

    PubMed  PubMed Central  Google Scholar 

  40. Kim MK, Min DJ, Wright G, Goldlust I, Annunziata CM. Loss of compensatory pro-survival and anti-apoptotic modulator, IKKepsilon, sensitizes ovarian cancer cells to CHEK1 loss through an increased level of p21. Oncotarget. 2014;5(24):12788–802.

    PubMed  PubMed Central  Google Scholar 

  41. Guo J, Kim D, Gao J, Kurtyka C, Chen H, Yu C, et al. IKBKE is induced by STAT3 and tobacco carcinogen and determines chemosensitivity in non-small cell lung cancer. Oncogene. 2013;32(2):151–9.

    CAS  PubMed  Google Scholar 

  42. Li W, Chen Y, Zhang J, Hong L, Yuan N, Wang X, et al. IKBKE upregulation is positively associated with squamous cell carcinoma of the lung in vivo and malignant transformation of human bronchial epithelial cells in vitro. Med Sci Monit. 2015;21:1577–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Challa S, Guo JP, Ding X, Xu CX, Li Y, Kim D, et al. IKBKE is a substrate of EGFR and a therapeutic target in non-small cell lung cancer with activating mutations of EGFR. Cancer Res. 2016;76(15):4418–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Goktuna SI, Shostak K, Chau TL, Heukamp LC, Hennuy B, Duong HQ, et al. The prosurvival IKK-related kinase IKKepsilon integrates LPS and IL17A signaling cascades to promote Wnt-dependent tumor development in the intestine. Cancer Res. 2016;76(9):2587–99.

    CAS  PubMed  Google Scholar 

  45. Geng B, Zhang C, Wang C, Che Y, Mu X, Pan J, et al. IkappaB-kinase-epsilon in the tumor microenvironment is essential for the progression of gastric cancer. Oncotarget. 2017;8(43):75298–307.

    PubMed  PubMed Central  Google Scholar 

  46. Zubair H, Azim S, Srivastava SK, Ahmad A, Bhardwaj A, Khan MA, et al. Glucose metabolism reprogrammed by overexpression of IKKepsilon promotes pancreatic tumor growth. Cancer Res. 2016;76(24):7254–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Cheng C, Ji Z, Sheng Y, Wang J, Sun Y, Zhao H, et al. Aphthous ulcer drug inhibits prostate tumor metastasis by targeting IKKvarepsilon/TBK1/NF-kappaB signaling. Theranostics. 2018;8(17):4633–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Peant B, Gilbert S, Le Page C, Poisson A, L’Ecuyer E, Boudhraa Z, et al. IkappaB-Kinase-epsilon (IKKepsilon) over-expression promotes the growth of prostate cancer through the C/EBP-beta dependent activation of IL-6 gene expression. Oncotarget. 2017;8(9):14487–501.

    PubMed  Google Scholar 

  49. Zhang Z, Wang Z, Huang K, Liu Y, Wei C, Zhou J, et al. PLK4 is a determinant of temozolomide sensitivity through phosphorylation of IKBKE in glioblastoma. Cancer Lett. 2019;443:91–107.

    CAS  PubMed  Google Scholar 

  50. Xie X, Zhang D, Zhao B, Lu MK, You M, Condorelli G, Wang CY, Guan KL, et al. IkappaB kinase epsilon and TANK-binding kinase 1 activate AKT by direct phosphorylation. Proc Natl Acad Sci USA. 2011;108(16):6474–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Krishnamurthy S, Basu A. Regulation of IKKepsilon expression by Akt2 isoform. Genes Cancer. 2011;2(11):1044–50.

    PubMed  PubMed Central  Google Scholar 

  52. Lafont E, Draber P, Rieser E, Reichert M, Kupka S, de Miguel D, et al. TBK1 and IKKε prevent TNF-induced cell death by RIPK1 phosphorylation. Nat Cell Biol. 2018;20(12):1389–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Leonardi M, Perna E, Tronnolone S, Colecchia D, Chiariello M. Activated kinase screening identifies the IKBKE oncogene as a positive regulator of autophagy. Autophagy. 2019;15(2):312–26.

    CAS  PubMed  Google Scholar 

  54. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Bio. 2006;7(2):131–42.

    CAS  Google Scholar 

  55. Boutet A, De Frutos CA, Maxwell PH, Mayol MJ, Romero J, Nieto MA. Snail activation disrupts tissue homeostasis and induces fibrosis in the adult kidney. Embo J. 2006;25(23):5603–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Han SP, Kim JH, Han ME, Sim HE, Kim KS, Yoon S, et al. SNAI1 is involved in the proliferation and migration of glioblastoma cells. Cell Mol Neurobiol. 2011;31(3):489–96.

    CAS  PubMed  Google Scholar 

  57. Savary K, Caglayan D, Caja L, Tzavlaki K, Bin Nayeem S, Bergström T, et al. Snail depletes the tumorigenic potential of glioblastoma. Oncogene. 2013;32(47):5409–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Cheng W, Kandel JJ, Yamashiro DJ, Canoll P, Anastassiou D. A multi-cancer mesenchymal transition gene expression signature is associated with prolonged time to recurrence in glioblastoma. PLoS ONE. 2012;7(4): e34705.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006;9(3):157–73.

    CAS  PubMed  Google Scholar 

  60. Reilly SM, Ahmadian M, Zamarron BF, Chang L, Uhm M, Poirier B, et al. A subcutaneous adipose tissue–liver signalling axis controls hepatic gluconeogenesis. Nat Commun. 2015. https://doi.org/10.1038/ncomms7047.

    Article  PubMed  Google Scholar 

  61. Zhang K, Corsa CA, Ponik SM, Prior JL, Piwnica-Worms D, Eliceiri KW, et al. The collagen receptor discoidin domain receptor 2 stabilizes SNAIL1 to facilitate breast cancer metastasis. Nat Cell Biol. 2013;15(6):677–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang Z, Rayala S, Nguyen D, Vadlamudi RK, Chen S, Kumar R. Pak1 phosphorylation of snail, a master regulator of epithelial-to-mesenchyme transition, modulates snail’s subcellular localization and functions. Cancer Res. 2005;65(8):3179–84.

    CAS  PubMed  Google Scholar 

  63. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, et al. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol. 2004;6(10):931–40.

    CAS  PubMed  Google Scholar 

  64. Xu Y, Lee SH, Kim HS, Kim NH, Piao S, Park SH, et al. Role of CK1 in GSK3beta-mediated phosphorylation and degradation of snail. Oncogene. 2010;29(21):3124–33.

    CAS  PubMed  Google Scholar 

  65. Yook JI, Li XY, Ota I, Eric Fearon R, Stephen JW. Wnt-dependent regulation of the E-cadherin repressor snail. J Biol Chem. 2005;280(12):11740–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant NO.81572490).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All assays were performed in accordance with regulations and internal biosafety and bioethical guidelines of Tianjin Medical University and Tianjin Science and Technology Committee (No. IRB2019-WZ-129).

Informed consent

For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12094_2021_2726_MOESM1_ESM.tif

Supplementary file 1: Figure 1. Transfected GBM cells were examined by fluorescence microscopy (left panel) and phase-contrast microscopy (right panel) (scale bar = 5 mm) (TIF 3696 KB).

12094_2021_2726_MOESM2_ESM.tif

Supplementary file 2: Figure 2. Expression of Snail1 in IKBKE-knockdown and overexpression cells was examined at the transcript level by qRT-PCR (TIF 914 KB).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Guo, G., Lu, Y. et al. Silencing IKBKE inhibits the migration and invasion of glioblastoma by promoting Snail1 degradation. Clin Transl Oncol 24, 816–828 (2022). https://doi.org/10.1007/s12094-021-02726-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02726-2

Keywords

Navigation