Skip to main content

Advertisement

Log in

Cyclin-dependent kinase (CDK) inhibitors in solid tumors: a review of clinical trials

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Cyclin-dependent kinases (CDKs) play a key regulating role in the cell cycle, which is almost universally altered in cancer, leading to sustained proliferation. Early pan-CDK inhibitors showed poor results in clinical trials for solid malignancies, as the lack of selectivity produced significant toxicity. The production of more selective inhibitors led to significant developments in cancer therapy, as CDK4/6 inhibitors in combination with endocrine therapy changed the landscape of the treatment of hormone-receptor positive (HR +) metastatic breast cancer. Recently, Trilaciclib demonstrated benefits regarding hematological toxicity compared to placebo when administered in combination with chemotherapy in small cell lung cancer. Newer agents, such as SY-5609, a selective CDK7 inhibitor, have also shown promising results in early clinical trials. In this paper, we review the data from clinical trials of CDK inhibitors in solid tumors, either as a monotherapy or in combination with other agents, with an emphasis on novel agents and potential new indications for this drug class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Poon RYC. Cell cycle control: a system of interlinking oscillators. Methods Mol Biol. 2016;1342:3–19. https://doi.org/10.1007/978-1-4939-2957-3_1.

    Article  PubMed  Google Scholar 

  2. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9:153–66. https://doi.org/10.1038/nrc2602.

    Article  CAS  PubMed  Google Scholar 

  3. Malumbres M, Barbacid M. Mammalian cyclin-dependent kinases. Trends Biochem Sci. 2005;30:630–41. https://doi.org/10.1016/j.tibs.2005.09.005.

    Article  CAS  PubMed  Google Scholar 

  4. Sherr CJ. Cancer cell cycles. Science. 1996;274:1672–7. https://doi.org/10.1126/science.274.5293.1672.

    Article  CAS  PubMed  Google Scholar 

  5. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  6. Klein ME, Kovatcheva M, Davis LE, Tap WD, Koff A. CDK4/6 inhibitors: the mechanism of action may not be as simple as once thought. Cancer Cell. 2018;34:9–20. https://doi.org/10.1016/j.ccell.2018.03.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Konecny GE, Winterhoff B, Kolarova T, Qi J, Manivong K, Dering J, et al. Expression of p16 and retinoblastoma determines response to CDK4/6 inhibition in ovarian cancer. Clin Cancer Res. 2011;17:1591–602. https://doi.org/10.1158/1078-0432.CCR-10-2307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Scott SC, Lee SS, Abraham J. Mechanisms of therapeutic CDK4/6 inhibition in breast cancer. Semin Oncol. 2017;44:385–94. https://doi.org/10.1053/j.seminoncol.2018.01.006.

    Article  CAS  PubMed  Google Scholar 

  9. Poratti M, Marzaro G. Third-generation CDK inhibitors: a review on the synthesis and binding modes of palbociclib, ribociclib and abemaciclib. Eur J Med Chem. 2019;172:143–53. https://doi.org/10.1016/j.ejmech.2019.03.064.

    Article  CAS  PubMed  Google Scholar 

  10. Asghar U, Witkiewicz AK, Turner NC, Knudsen ES. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov. 2015;14:130–46. https://doi.org/10.1038/nrd4504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ingham M, Schwartz GK. Cell-cycle therapeutics come of age. J Clin Oncol. 2017;35:2949–59. https://doi.org/10.1200/JCO.2016.69.0032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. FDA Approves Drug to Reduce Bone Marrow Suppression Caused by Chemotherapy. FDA n.d. https://www.fda.gov/news-events/press-announcements/fda-approves-drug-reduce-bone-marrow-suppression-caused-chemotherapy Accessed February 14, 2021.

  13. DeMichele A, Clark AS, Tan KS, Heitjan DF, Gramlich K, Gallagher M, et al. CDK 4/6 inhibitor palbociclib (PD0332991) in Rb + advanced breast cancer: phase II Activity, safety, and predictive biomarker assessment. Clin Cancer Res. 2015;21:995–1001. https://doi.org/10.1158/1078-0432.CCR-14-2258.

    Article  CAS  PubMed  Google Scholar 

  14. Malorni L, Curigliano G, Minisini AM, Cinieri S, Tondini CA, D’Hollander K, et al. Palbociclib as single agent or in combination with the endocrine therapy received before disease progression for estrogen receptor-positive, HER2-negative metastatic breast cancer: TREnd trial. Ann Oncol. 2018;29:1748–54. https://doi.org/10.1093/annonc/mdy214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Finn RS, Crown JP, Lang I, Boer K, Bondarenko IM, Kulyk SO, et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol. 2015;16:25–35. https://doi.org/10.1016/S1470-2045(14)71159-3.

    Article  CAS  PubMed  Google Scholar 

  16. Finn RS, Boer K, Bondarenko I, Patel R, Pinter T, Schmidt M, et al. Overall survival results from the randomized phase 2 study of palbociclib in combination with letrozole versus letrozole alone for first-line treatment of ER+/HER2− advanced breast cancer (PALOMA-1, TRIO-18). Breast Cancer Res Treat. 2020;183:419–28. https://doi.org/10.1007/s10549-020-05755-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Research C for DE and. Palbociclib (IBRANCE). FDA 2019. https://www.fda.gov/drugs/resources-information-approved-drugs/palbociclib-ibrance Accessed December 29, 2020.

  18. Finn RS, Martin M, Rugo HS, Jones S, Im S-A, Gelmon K, et al. Palbociclib and letrozole in advanced breast cancer. N Engl J Med. 2016;375:1925–36. https://doi.org/10.1056/NEJMoa1607303.

    Article  CAS  PubMed  Google Scholar 

  19. Turner NC, Ro J, André F, Loi S, Verma S, Iwata H, et al. Palbociclib in hormone-receptor-positive advanced breast cancer. N Engl J Med. 2015;373:209–19. https://doi.org/10.1056/NEJMoa1505270.

    Article  CAS  PubMed  Google Scholar 

  20. Llombart-Cussac A, Pérez-García JM, Bellet M, Dalenc F, Gil Gil MJ, Ruiz Borrego M, et al. PARSIFAL: a randomized, multicenter, open-label, phase II trial to evaluate palbociclib in combination with fulvestrant or letrozole in endocrine-sensitive patients with estrogen receptor (ER)[+]/HER2[-] metastatic breast cancer. JCO. 2020;38:1007–1007. https://doi.org/10.1200/JCO.2020.38.15_suppl.1007.

    Article  Google Scholar 

  21. Barroso-Sousa R, Li T, Trippa L, Rees R, Andrews C, Ferreira AR, et al. Abstract P5-11-04: A phase I/IIb study of palbociclib (PALBO) plus everolimus (EVE) and exemestane (EXE) in hormone-receptor positive (HR+)/HER2- metastatic breast cancer (MBC) after progression on a CDK4/6 inhibitor (CDK4/6i): results of the phase II study. Cancer Res. 2020. https://doi.org/10.1158/1538-7445.SABCS19-P5-11-04.

    Article  Google Scholar 

  22. Gianni L, Bisagni G, Colleoni M, Mastro LD, Zamagni C, Mansutti M, et al. Neoadjuvant treatment with trastuzumab and pertuzumab plus palbociclib and fulvestrant in HER2-positive, ER-positive breast cancer (NA-PHER2): an exploratory, open-label, phase 2 study. Lancet Oncol. 2018;19:249–56. https://doi.org/10.1016/S1470-2045(18)30001-9.

    Article  CAS  PubMed  Google Scholar 

  23. Mayer EL, Dueck AC, Martin M, Rubovszky G, Burstein HJ, Bellet-Ezquerra M, et al. Palbociclib with adjuvant endocrine therapy in early breast cancer (PALLAS): interim analysis of a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2021. https://doi.org/10.1016/S1470-2045(20)30642-2.

    Article  PubMed  Google Scholar 

  24. Jeselsohn R, Guo H, Rees R, Barry WT, Barlett CH, Tung NM, et al. Abstract PD1–05: results from the phase Ib/II clinical trial of bazedoxifene and palbociclib in hormone receptor positive metastatic breast cancer. Cancer Res. 2019. https://doi.org/10.1158/1538-7445.SABCS18-PD1-05.

    Article  Google Scholar 

  25. Gucalp A, Boyle LA, Alano T, Arumov A, Gounder MM, Patil S, et al. Phase II trial of bicalutamide in combination with palbociclib for the treatment of androgen receptor (+) metastatic breast cancer. JCO. 2020;38:1017–1017. https://doi.org/10.1200/JCO.2020.38.15_suppl.1017.

    Article  Google Scholar 

  26. Hortobagyi GN, Stemmer SM, Burris HA, Yap YS, Sonke GS, Paluch-Shimon S, et al. Updated results from MONALEESA-2, a phase III trial of first-line ribociclib plus letrozole versus placebo plus letrozole in hormone receptor-positive, HER2-negative advanced breast cancer. Ann Oncol. 2018;29:1541–7. https://doi.org/10.1093/annonc/mdy155.

    Article  CAS  PubMed  Google Scholar 

  27. Tripathy D, Im S-A, Colleoni M, Franke F, Bardia A, Harbeck N, et al. Ribociclib plus endocrine therapy for premenopausal women with hormone-receptor-positive, advanced breast cancer (MONALEESA-7): a randomised phase 3 trial. Lancet Oncol. 2018;19:904–15. https://doi.org/10.1016/S1470-2045(18)30292-4.

    Article  CAS  PubMed  Google Scholar 

  28. Im S-A, Lu Y-S, Bardia A, Harbeck N, Colleoni M, Franke F, et al. Overall survival with ribociclib plus endocrine therapy in breast cancer. N Engl J Med. 2019;381:307–16. https://doi.org/10.1056/NEJMoa1903765.

    Article  CAS  PubMed  Google Scholar 

  29. Research C for DE and. FDA expands ribociclib indication in HR-positive, HER2-negative advanced or metastatic breast cancer. FDA 2018. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-expands-ribociclib-indication-hr-positive-her2-negative-advanced-or-metastatic-breast-cancer Accessed July 17, 2021.

  30. Slamon DJ, Neven P, Chia S, Fasching PA, De Laurentiis M, Im S-A, et al. Phase III randomized study of ribociclib and fulvestrant in hormone receptor-positive, human epidermal growth factor receptor 2–negative advanced breast cancer: MONALEESA-3. JCO. 2018;36:2465–72. https://doi.org/10.1200/JCO.2018.78.9909.

    Article  CAS  Google Scholar 

  31. Slamon DJ, Neven P, Chia S, Fasching PA, De Laurentiis M, Im S-A, et al. Overall survival with ribociclib plus fulvestrant in advanced breast cancer. N Engl J Med. 2020;382:514–24. https://doi.org/10.1056/NEJMoa1911149.

    Article  CAS  PubMed  Google Scholar 

  32. Tolaney SM, Jerusalem G, Salgado R, Liu X, Chen T, Zhang H, et al. 133TiP a phase II trial of nivolumab + palbociclib + anastrozole in postmenopausal women with ER+/HER2– primary breast cancer: CheckMate 7A8. Ann Oncol. 2020;31:S60. https://doi.org/10.1016/j.annonc.2020.03.235.

    Article  Google Scholar 

  33. Bardia A, Hurvitz SA, DeMichele A, Clark AS, Zelnak AB, Yardley DA, et al. Triplet therapy (continuous ribociclib, everolimus, exemestane) in HR+/HER2− advanced breast cancer postprogression on a CDK4/6 inhibitor (TRINITI-1): efficacy, safety, and biomarker results. JCO. 2019;37:1016–1016. https://doi.org/10.1200/JCO.2019.37.15_suppl.1016.

    Article  Google Scholar 

  34. Khan QJ, O’Dea A, Bardia A, Kalinsky K, Wisinski KB, O’Regan R, et al. Letrozole + ribociclib versus letrozole + placebo as neoadjuvant therapy for ER+ breast cancer (FELINE trial). JCO. 2020;38:505–505. https://doi.org/10.1200/JCO.2020.38.15_suppl.505.

    Article  Google Scholar 

  35. Prat A, Saura C, Pascual T, Hernando C, Muñoz M, Paré L, et al. Ribociclib plus letrozole versus chemotherapy for postmenopausal women with hormone receptor-positive, HER2-negative, luminal B breast cancer (CORALLEEN): an open-label, multicentre, randomised, phase 2 trial. Lancet Oncol. 2020;21:33–43. https://doi.org/10.1016/S1470-2045(19)30786-7.

    Article  CAS  PubMed  Google Scholar 

  36. Slamon DJ, Fasching PA, Patel R, Verma S, Hurvitz SA, Chia SKL, et al. NATALEE: Phase III study of ribociclib (RIBO) + endocrine therapy (ET) as adjuvant treatment in hormone receptor–positive (HR+), human epidermal growth factor receptor 2–negative (HER2–) early breast cancer (EBC). JCO. 2019;37:TPS597–TPS597. https://doi.org/10.1200/JCO.2019.37.15_suppl.TPS597.

    Article  Google Scholar 

  37. Dickler MN, Tolaney SM, Rugo HS, Cortés J, Diéras V, Patt D, et al. MONARCH 1, a phase 2 study of abemaciclib, a CDK4 and CDK6 inhibitor, as a single agent, in patients with refractory HR+/HER2− metastatic breast cancer. Clin Cancer Res. 2017;23:5218–24. https://doi.org/10.1158/1078-0432.CCR-17-0754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Research C for DE and. FDA approves abemaciclib for HR-positive, HER2-negative breast cancer. FDA 2019. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-abemaciclib-hr-positive-her2-negative-breast-cancer Accessed January 31, 2021.

  39. Sledge GW, Toi M, Neven P, Sohn J, Inoue K, Pivot X, et al. The effect of abemaciclib plus fulvestrant on overall survival in hormone receptor-positive, ERBB2-negative breast cancer that progressed on endocrine therapy-MONARCH 2: a randomized clinical trial. JAMA Oncol. 2019. https://doi.org/10.1001/jamaoncol.2019.4782.

    Article  PubMed Central  Google Scholar 

  40. Johnston S, Martin M, Di Leo A, Im S-A, Awada A, Forrester T, et al. MONARCH 3 final PFS: a randomized study of abemaciclib as initial therapy for advanced breast cancer. NPJ Breast Cancer. 2019;5:1. https://doi.org/10.1038/s41523-018-0097-z.

    Article  CAS  Google Scholar 

  41. Research C for DE and. FDA approves abemaciclib as initial therapy for HR-positive, HER2-negative metastatic breast cancer. FDA 2019. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-abemaciclib-initial-therapy-hr-positive-her2-negative-metastatic-breast-cancer. Accessed July 17, 2021.

  42. Daniel D, Kuchava V, Bondarenko I, Ivashchuk O, Spigel D, Dasgupta A, et al. 1742PD - Trilaciclib (T) decreases myelosuppression in extensive-stage small cell lung cancer (ES-SCLC) patients receiving first-line chemotherapy plus atezolizumab. Ann Oncol. 2019;30: v713. https://doi.org/10.1093/annonc/mdz264.006.

    Article  Google Scholar 

  43. Weiss JM, Csoszi T, Maglakelidze M, Hoyer RJ, Beck JT, Domine Gomez M, et al. Myelopreservation with the CDK4/6 inhibitor trilaciclib in patients with small-cell lung cancer receiving first-line chemotherapy: a phase Ib/randomized phase II trial. Ann Oncol. 2019;30:1613–21. https://doi.org/10.1093/annonc/mdz278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hart LL, Ferrarotto R, Andric ZG, Beck JT, Subramanian J, Radosavljevic DZ, et al. Myelopreservation with trilaciclib in patients receiving topotecan for small cell lung cancer: results from a randomized, double-blind, Placebo-Controlled Phase II Study. Adv Ther. 2020. https://doi.org/10.1007/s12325-020-01538-0.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Weiss J, Goldschmidt J, Zoran A, Dragnev KH, Pritchett Y, Morris SR, et al. Myelopreservation and reduced use of supportive care with trilaciclib in patients with small cell lung cancer. JCO. 2020;38:12096–12096. https://doi.org/10.1200/JCO.2020.38.15_suppl.12096.

    Article  Google Scholar 

  46. Takahashi M, Masuda N, Nishimura R, Inoue K, Ohno S, Iwata H, et al. Palbociclib-letrozole as first-line treatment for advanced breast cancer: updated results from a Japanese phase 2 study. Cancer Med. 2020;9:4929–40. https://doi.org/10.1002/cam4.3091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lynce F, Saleh M, Shajahan-Haq A, Gallagher C, Dilawari A, Hahn O, et al. PALINA: a phase II safety study of palbociclib in combination with letrozole or fulvestrant in African American women with hormone receptor positive HER2 negative advanced breast cancer. Contemp Clin Trials Commun. 2018;10:190–2. https://doi.org/10.1016/j.conctc.2018.05.012.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Park YH, Kim T-Y, Kim GM, Kang SY, Park IH, Kim JH, et al. Palbociclib plus exemestane with gonadotropin-releasing hormone agonist versus capecitabine in premenopausal women with hormone receptor-positive, HER2-negative metastatic breast cancer (KCSG-BR15-10): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 2019;20:1750–9. https://doi.org/10.1016/S1470-2045(19)30565-0.

    Article  CAS  PubMed  Google Scholar 

  49. Arnedos M, Cheaib B, Bayar MA, Michiels S, Scott V, Adam J, et al. Abstract CT041: anti-proliferative response and predictive biomarkers to palbociclib in early breast cancer: the preoperative palbociclib (POP) randomized trial. Cancer Res. 2016;76:CT041. https://doi.org/10.1158/1538-7445.AM2016-CT041.

    Article  Google Scholar 

  50. Ma CX, Gao F, Luo J, Northfelt DW, Goetz M, Forero A, et al. NeoPalAna: neoadjuvant palbociclib, a cyclin-dependent kinase 4/6 inhibitor, and anastrozole for clinical stage 2 or 3 estrogen receptor-positive breast cancer. Clin Cancer Res. 2017;23:4055–65. https://doi.org/10.1158/1078-0432.CCR-16-3206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cottu PH, Duhoux F, Lemonnier J, Bonnefoi H, Salomon AV, Asselain B, et al. Abstract OT3–2–06: NEOPAL: a randomized phase II study comparing RCB response to neoadjuvant chemotherapy or letrozole-palbociclib in PAM50 defined postmenopausal luminal breast cancer. Cancer Res. 2015. https://doi.org/10.1158/1538-7445.SABCS14-OT3-2-06.

    Article  Google Scholar 

  52. Shagisultanova E, Chalasani P, Brown-Glaberman UA, Gradishar WJ, Brenner AJ, Stopeck A, et al. Tucatinib, palbociclib, and letrozole in HR+/HER2+ metastatic breast cancer: report of phase IB safety cohort. JCO. 2019;37:1029–1029. https://doi.org/10.1200/JCO.2019.37.15_suppl.1029.

    Article  Google Scholar 

  53. Hurvitz SA, Martin M, Press MF, Chan D, Fernandez-Abad M, Petru E, et al. Potent cell-cycle inhibition and upregulation of immune response with abemaciclib and anastrozole in neoMONARCH, phase II neoadjuvant study in HR+/HER2- breast cancer. Clin Cancer Res. 2020;26:566–80. https://doi.org/10.1158/1078-0432.CCR-19-1425.

    Article  CAS  PubMed  Google Scholar 

  54. Hamilton EP, Cortés J, Ozyilkan O, Chen S-C, Petrakova K, Manikhas A, et al. 273O nextMONARCH: final overall survival analysis of abemaciclib monotherapy or in combination with tamoxifen in patients with HR+, HER2- metastatic breast cancer. Ann Oncol. 2020;31:S348. https://doi.org/10.1016/j.annonc.2020.08.375.

    Article  Google Scholar 

  55. Zhang QY, Sun T, Yin YM, Li HP, Yan M, Tong ZS, et al. MONARCH plus: abemaciclib plus endocrine therapy in women with HR+/HER2- advanced breast cancer: the multinational randomized phase III study. Ther Adv Med Oncol. 2020;12:1758835920963925. https://doi.org/10.1177/1758835920963925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tolaney SM, Wardley AM, Zambelli S, Hilton JF, Troso-Sandoval TA, Ricci F, et al. Abemaciclib plus trastuzumab with or without fulvestrant versus trastuzumab plus standard-of-care chemotherapy in women with hormone receptor-positive, HER2-positive advanced breast cancer (monarcHER): a randomised, open-label, phase 2 trial. Lancet Oncol. 2020;21:763–75. https://doi.org/10.1016/S1470-2045(20)30112-1.

    Article  CAS  PubMed  Google Scholar 

  57. Johnston S, Harbeck N, Hegg R, Toi M, Martin M, Shao Z, et al. 2MO Abemaciclib in high risk early breast cancer. Ann Oncol. 2020;31:S1242–3. https://doi.org/10.1016/j.annonc.2020.10.023.

    Article  Google Scholar 

  58. Arnedos M, Chaltiel D, Cheaib B, Drubay D, Gentien D, Vieillefon A, et al. 161O Randomized preoperative window of opportunity (WOO) study with the CDK4/6 inhibitor abemaciclib in early breast cancer (EBC) patients and differential gene expression pathway analyses with palbociclib. Ann Oncol. 2020;31:S304. https://doi.org/10.1016/j.annonc.2020.08.283.

    Article  Google Scholar 

  59. Mita MM, Joy AA, Mita A, Sankhala K, Jou Y-M, Zhang D, et al. Randomized phase II trial of the cyclin-dependent kinase inhibitor dinaciclib (MK-7965) versus capecitabine in patients with advanced breast cancer. Clin Breast Cancer. 2014;14:169–76. https://doi.org/10.1016/j.clbc.2013.10.016.

    Article  CAS  PubMed  Google Scholar 

  60. Chien AJ, Gliwa AS, Rahmaputri S, Dittrich HF, Majure MC, Rugo HS, et al. A phase Ib trial of the cyclin-dependent kinase inhibitor dinaciclib (dina) in combination with pembrolizumab (P) in patients with advanced triple-negative breast cancer (TNBC) and response correlation with MYC-overexpression. JCO. 2020;38:1076–1076. https://doi.org/10.1200/JCO.2020.38.15_suppl.1076.

    Article  Google Scholar 

  61. Mitri Z, Karakas K, Ibrahim NK, Alvarez RH, Murray JL, Briones B, et al. A phase 1 study of dinaciclib (SCH 727965) in combination with epirubicin in patients with metastatic triple-negative breast cancer. JCO. 2014;32:163–163. https://doi.org/10.1200/jco.2014.32.26_suppl.163.

    Article  Google Scholar 

  62. O’Shaughnessy J, Wright GS, Thummala AR, Danso MA, Popovic L, Pluard TJ, et al. Abstract PD1-06: Trilaciclib improves overall survival when given with gemcitabine/carboplatin in patients with metastatic triple-negative breast cancer: Final analysis of a randomized phase 2 trial. Cancer Res 2021;81:PD1-PD1-06. https://doi.org/10.1158/1538-7445.SABCS20-PD1-06.

  63. Tan AR, Wright GS, Thummala AR, Danso MA, Popovic L, Pluard TJ, et al. Trilaciclib plus chemotherapy versus chemotherapy alone in patients with metastatic triple-negative breast cancer: a multicentre, randomised, open-label, phase 2 trial. Lancet Oncol. 2019;20:1587–601. https://doi.org/10.1016/S1470-2045(19)30616-3.

    Article  CAS  PubMed  Google Scholar 

  64. Commissioner O of the. FDA Approves First Targeted Therapy for Lung Cancer Mutation Previously Considered Resistant to Drug Therapy. FDA 2021. https://www.fda.gov/news-events/press-announcements/fda-approves-first-targeted-therapy-lung-cancer-mutation-previously-considered-resistant-drug Accessed July 17, 2021.

  65. Karachaliou N, Mayo C, Costa C, Magrí I, Gimenez-Capitan A, Molina-Vila MA, et al. KRAS mutations in lung cancer. Clin Lung Cancer. 2013;14:205–14. https://doi.org/10.1016/j.cllc.2012.09.007.

    Article  CAS  PubMed  Google Scholar 

  66. Patnaik A, Rosen LS, Tolaney SM, Tolcher AW, Goldman JW, Gandhi L, et al. Efficacy and safety of abemaciclib, an inhibitor of CDK4 and CDK6, for Patients with breast cancer, non-small cell lung cancer, and other solid tumors. Cancer Discov. 2016;6:740–53. https://doi.org/10.1158/2159-8290.CD-16-0095.

    Article  CAS  PubMed  Google Scholar 

  67. Goldman JW, Shi P, Reck M, Paz-Ares L, Koustenis A, Hurt KC. Treatment rationale and study design for the JUNIPER study: a randomized phase III study of abemaciclib with best supportive care versus erlotinib with best supportive care in patients with stage IV non-small-cell lung cancer with a detectable KRAS mutation whose disease has progressed after platinum-based chemotherapy. Clin Lung Cancer. 2016;17:80–4. https://doi.org/10.1016/j.cllc.2015.08.003.

    Article  CAS  PubMed  Google Scholar 

  68. Goldman JW, Mazieres J, Barlesi F, Dragnev KH, Koczywas M, Göskel T, et al. A randomized phase III study of abemaciclib versus erlotinib in patients with stage IV non-small cell lung cancer with a detectable KRAS mutation who failed prior platinum-based therapy: JUNIPER. Front Oncol. 2020;10:1. https://doi.org/10.3389/fonc.2020.578756.

    Article  Google Scholar 

  69. Scagliotti GV, Bondarenko I, Ciuleanu T-E, Bryl M, Fülöp A, Vicente D, et al. A randomized phase 2 study of abemaciclib versus docetaxel in patients with stage IV squamous non-small cell lung cancer (sqNSCLC) previously treated with platinum-based chemotherapy. JCO. 2018;36:9059–9059. https://doi.org/10.1200/JCO.2018.36.15_suppl.9059.

    Article  Google Scholar 

  70. Besse B, Barlesi F, Demedts I, Fuentes Pradera J, Robinet G, Gazzah A, et al. A phase 1b study of necitumumab in combination with abemaciclib in patients with stage IV non-small cell lung cancer. Lung Cancer. 2019;137:136–43. https://doi.org/10.1016/j.lungcan.2019.09.002.

    Article  PubMed  Google Scholar 

  71. Pujol J-L, Vansteenkiste JF, Paz-Ares LG, Gregorc V, Mazieres J, Awad MM, et al. A phase Ib study of abemaciclib in combination with pembrolizumab for patients (pts) with stage IV Kirsten rat sarcoma mutant (KRAS-mut) or squamous non-small cell lung cancer (NSCLC) (NCT02779751): interim results. JCO. 2020;38:9562–9562. https://doi.org/10.1200/JCO.2020.38.15_suppl.9562.

    Article  Google Scholar 

  72. Hui R, Garon EB, Goldman JW, Leighl NB, Hellmann MD, Patnaik A, et al. Pembrolizumab as first-line therapy for patients with PD-L1-positive advanced non-small cell lung cancer: a phase 1 trial. Ann Oncol. 2017;28:874–81. https://doi.org/10.1093/annonc/mdx008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Goldman JW, Gandhi L, Patnaik A, Rosen LS, Hilton JF, Papadopoulos KP, et al. Clinical activity of LY2835219, a novel cell cycle inhibitor selective for CDK4 and CDK6, in patients with non-small cell lung cancer. JCO. 2014;32:8026–8026. https://doi.org/10.1200/jco.2014.32.15_suppl.8026.

    Article  Google Scholar 

  74. Santoro A, Su W-C, Navarro A, Simonelli M, Yang JC-H, Ardizzoni A, et al. Dose-determination results from a phase Ib/II study of ceritinib (CER) + ribociclib (RIB) in ALK-positive (ALK+) non-small cell lung cancer (NSCLC). Ann Oncol. 2018;29:viii501–2. https://doi.org/10.1093/annonc/mdy292.015.

    Article  Google Scholar 

  75. Peters S, Camidge DR, Shaw AT, Gadgeel S, Ahn JS, Kim D-W, et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N Engl J Med. 2017;377:829–38. https://doi.org/10.1056/NEJMoa1704795.

    Article  CAS  PubMed  Google Scholar 

  76. Camidge DR, Kim HR, Ahn M-J, Yang JC-H, Han J-Y, Lee J-S, et al. Brigatinib versus crizotinib in ALK-positive non-small-cell lung cancer. N Engl J Med. 2018;379:2027–39. https://doi.org/10.1056/NEJMoa1810171.

    Article  CAS  PubMed  Google Scholar 

  77. Shaw AT, Bauer TM, de Marinis F, Felip E, Goto Y, Liu G, et al. First-line lorlatinib or crizotinib in advanced ALK-positive lung cancer. N Engl J Med. 2020. https://doi.org/10.1056/NEJMoa2027187.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gopalan PK, Pinder MC, Chiappori A, Ivey AM, Gordillo Villegas A, Kaye FJ. A phase II clinical trial of the CDK 4/6 inhibitor palbociclib (PD 0332991) in previously treated, advanced non-small cell lung cancer (NSCLC) patients with inactivated CDKN2A. JCO. 2014;32:8077–8077. https://doi.org/10.1200/jco.2014.32.15_suppl.8077.

    Article  Google Scholar 

  79. Edelman MJ, Redman MW, Albain KS, McGary EC, Rafique NM, Petro D, et al. SWOG S1400C (NCT02154490)-a phase II study of palbociclib for previously treated cell cycle gene alteration-positive patients with stage IV squamous cell lung cancer (lung-MAP substudy). J Thorac Oncol. 2019;14:1853–9. https://doi.org/10.1016/j.jtho.2019.06.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Solomon BM, Callejo A, Bar J, Berchem GJ, Bazhenova L, Saintigny P, et al. SPRING: a worldwide innovative network (WIN) consortium phase I study of triple therapy (avelumab, axitinib, and palbociclib) in advanced non-small cell lung cancer (NSCLC) with genomic and transcriptomic correlates. JCO. 2020;38:9581–9581. https://doi.org/10.1200/JCO.2020.38.15_suppl.9581.

    Article  Google Scholar 

  81. Stephenson JJ, Nemunaitis J, Joy AA, Martin JC, Jou Y-M, Zhang D, et al. Randomized phase 2 study of the cyclin-dependent kinase inhibitor dinaciclib (MK-7965) versus erlotinib in patients with non-small cell lung cancer. Lung Cancer. 2014;83:219–23. https://doi.org/10.1016/j.lungcan.2013.11.020.

    Article  PubMed  Google Scholar 

  82. Bahleda R, Grilley-Olson JE, Govindan R, Barlesi F, Greillier L, Perol M, et al. Phase I dose-escalation studies of roniciclib, a pan-cyclin-dependent kinase inhibitor, in advanced malignancies. Br J Cancer. 2017;116:1505–12. https://doi.org/10.1038/bjc.2017.92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Reck M, Horn L, Novello S, Barlesi F, Albert I, Juhasz E, et al. Phase II study of roniciclib in combination with cisplatin/etoposide or carboplatin/etoposide as first-line therapy in subjects with extensive-disease small cell lung cancer (ED-SCLC). Ann Oncol. 2016;27:vii494. https://doi.org/10.1093/annonc/mdw389.04.

    Article  Google Scholar 

  84. Cho BC, Dy GK, Govindan R, Kim D-W, Pennell NA, Zalcman G, et al. Phase Ib/II study of the pan-cyclin-dependent kinase inhibitor roniciclib in combination with chemotherapy in patients with extensive-disease small-cell lung cancer. Lung Cancer. 2018;123:14–21. https://doi.org/10.1016/j.lungcan.2018.04.022.

    Article  PubMed  Google Scholar 

  85. Colon-Otero G, Zanfagnin V, Hou X, Foster NR, Asmus EJ, Wahner Hendrickson A, et al. Phase II trial of ribociclib and letrozole in patients with relapsed oestrogen receptor-positive ovarian or endometrial cancers. ESMO Open. 2020. https://doi.org/10.1136/esmoopen-2020-000926.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Konecny GE, Wahner Hendrickson AE, Jatoi A, Burton JK, Paroly J, Glaspy JA, et al. A multicenter open-label phase II study of the efficacy and safety of palbociclib a cyclin-dependent kinases 4 and 6 inhibitor in patients with recurrent ovarian cancer. JCO. 2016;34:5557–5557. https://doi.org/10.1200/JCO.2016.34.15_suppl.5557.

    Article  Google Scholar 

  87. Karasic TB, O’Hara MH, Teitelbaum UR, Damjanov N, Giantonio BJ, d’Entremont TS, et al. Phase II trial of palbociclib in patients with advanced esophageal or gastric cancer. JCO. 2018;36:68–68. https://doi.org/10.1200/JCO.2018.36.4_suppl.68.

    Article  Google Scholar 

  88. Kosovec JE, Zaidi AH, Omstead AN, Matsui D, Biedka MJ, Cox EJ, et al. CDK4/6 dual inhibitor abemaciclib demonstrates compelling preclinical activity against esophageal adenocarcinoma: a novel therapeutic option for a deadly disease. Oncotarget. 2017;8:100421–32. https://doi.org/10.18632/oncotarget.22244.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Uboha NV, Eickhoff JC, Chandrasekharan C, Jalal SI, Benson AB, Deming DA, et al. Phase II study of the combination of abemaciclib and pembrolizumab in locally advanced unresectable or metastatic gastroesophageal adenocarcinoma: Big Ten Cancer Research Consortium BTCRC-GI18–149. JCO. 2020;38:TSP461. https://doi.org/10.1200/JCO.2020.38.4_suppl.TPS461.

    Article  Google Scholar 

  90. Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E, et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther. 2004;3:1427–38.

    CAS  PubMed  Google Scholar 

  91. Tate SC, Cai S, Ajamie RT, Burke T, Beckmann RP, Chan EM, et al. Semi-mechanistic pharmacokinetic/pharmacodynamic modeling of the antitumor activity of LY2835219, a new cyclin-dependent kinase 4/6 inhibitor, in mice bearing human tumor xenografts. Clin Cancer Res. 2014;20:3763–74. https://doi.org/10.1158/1078-0432.CCR-13-2846.

    Article  CAS  PubMed  Google Scholar 

  92. O’Hara MH, Edmonds C, Farwell M, Perini RF, Pryma DA, Teitelbaum UR, et al. Phase II pharmacodynamic trial of palbociclib in patients with KRAS mutant colorectal cancer. JCO. 2015;33:626–626. https://doi.org/10.1200/jco.2015.33.3_suppl.626.

    Article  Google Scholar 

  93. McGuigan A, Kelly P, Turkington RC, Jones C, Coleman HG, McCain RS. Pancreatic cancer: a review of clinical diagnosis, epidemiology, treatment and outcomes. World J Gastroenterol. 2018;24:4846–61. https://doi.org/10.3748/wjg.v24.i43.4846.

    Article  PubMed  PubMed Central  Google Scholar 

  94. An Adaptive, Open-Label, Randomized Phase 2 Study of Abemaciclib as a Monotherapy and in Combination With Other Agents Versus Choice of Standard of Care (Gemcitabine or Capecitabine) in Patients With Previously Treated Metastatic Pancreatic Ductal Adenocarcinoma n.d. https://clinicaltrials.gov/ct2/show/NCT02981342. Accessed February 2, 2021.

  95. Weinberg BA, Wang H, Witkiewicz AK, Marshall JL, He AR, Knudsen ES, et al. Abstract CT116: A phase I study of ribociclib plus everolimus in patients with metastatic pancreatic adenocarcinoma refractory to chemotherapy. Cancer Res. 2020;80:CT116. https://doi.org/10.1158/1538-7445.AM2020-CT116.

    Article  Google Scholar 

  96. Murphy AG, Zahurak M, Shah M, Weekes CD, Hansen A, Siu LL, et al. A phase I study of dinaciclib in combination with mk-2206 in patients with advanced pancreatic cancer. Clin Transl Sci. 2020;13:1178–88. https://doi.org/10.1111/cts.12802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hidalgo M, Carbonero RG, Lim K-H, Messersmith W, Garrido-Laguna I, Borazanci E, et al. Abstract CT135: a phase 1b study of palbociclib + nab-paclitaxel in patients (pts) with metastatic adenocarcinoma of the pancreas (PDAC). Cancer Res. 2020;80:CT135. https://doi.org/10.1158/1538-7445.AM2020-CT135.

    Article  Google Scholar 

  98. Littman SJ, Brus C, Burkart A. A phase II study of palbociclib (PD-0332991) in adult patients with advanced hepatocellular carcinoma. JCO. 2015;33:277–277. https://doi.org/10.1200/jco.2015.33.3_suppl.277.

    Article  Google Scholar 

  99. Adeva J, Sangro B, Salati M, Edeline J, La Casta A, Bittoni A, et al. Medical treatment for cholangiocarcinoma. Liver Int. 2019;39(Suppl 1):123–42. https://doi.org/10.1111/liv.14100.

    Article  PubMed  Google Scholar 

  100. Sittithumcharee G, Suppramote O, Vaeteewoottacharn K, Sirisuksakun C, Jamnongsong S, Laphanuwat P, et al. Dependency of cholangiocarcinoma on cyclin D-dependent kinase activity. Hepatology. 2019;70:1614–30. https://doi.org/10.1002/hep.30704.

    Article  CAS  PubMed  Google Scholar 

  101. Heinrich MC, Patterson J, Beadling C, Wang Y, Debiec-Rychter M, Dewaele B, et al. Genomic aberrations in cell cycle genes predict progression of KIT-mutant gastrointestinal stromal tumors (GISTs). Clin Sarcoma Res. 2019. https://doi.org/10.1186/s13569-019-0112-7.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Pan Q, Sathe A, Black PC, Goebell PJ, Kamat AM, Schmitz-Draeger B, et al. CDK4/6 inhibitors in cancer therapy: a novel treatement strategy for bladder cancer. Bladder Cancer. 2020;3:79–88. https://doi.org/10.3233/BLC-170105.

    Article  CAS  Google Scholar 

  103. Toulmonde M, Blay J-Y, Bouche O, Mir O, Penel N, Isambert N, et al. Activity and safety of palbociclib in patients with advanced gastrointestinal stromal tumors refractory to imatinib and sunitinib: a biomarker-driven phase II study. Clin Cancer Res. 2019;25:4611–5. https://doi.org/10.1158/1078-0432.CCR-18-3127.

    Article  CAS  PubMed  Google Scholar 

  104. Rose TL, Chism DD, Alva AS, Deal AM, Maygarden SJ, Whang YE, et al. Phase II trial of palbociclib in patients with metastatic urothelial cancer after failure of first-line chemotherapy. Br J Cancer. 2018;119:801–7. https://doi.org/10.1038/s41416-018-0229-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. O’Leary B, Finn RS, Turner NC. Treating cancer with selective CDK4/6 inhibitors. Nat Rev Clin Oncol. 2016;13:417–30. https://doi.org/10.1038/nrclinonc.2016.26.

    Article  CAS  PubMed  Google Scholar 

  106. Small J, Washburn E, Millington K, Zhu J, Holder SL. The addition of abemaciclib to sunitinib induces regression of renal cell carcinoma xenograft tumors. Oncotarget. 2017;8:95116–34. https://doi.org/10.18632/oncotarget.19618.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Taylor JW, Parikh M, Phillips JJ, James CD, Molinaro AM, Butowski NA, et al. Phase-2 trial of palbociclib in adult patients with recurrent RB1-positive glioblastoma. J Neurooncol. 2018;140:477–83. https://doi.org/10.1007/s11060-018-2977-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sepulveda-Sanchez JM, Gil Gil MJ, Alonso M, Vaz Salgado MÁ, Vicente E, Mesia Barroso C, et al. Phase II trial of palbociclib in recurrent RB-positive anaplastic oligodendroglioma: a Spanish group for research in neurooncology (GEINO) trial. JCO. 2019;37:2038–2038. https://doi.org/10.1200/JCO.2019.37.15_suppl.2038.

    Article  Google Scholar 

  109. Mater DV, Gururangan S, Becher O, Campagne O, Leary S, Phillips JJ, et al. A phase I trial of the CDK 4/6 inhibitor palbociclib in pediatric patients with progressive brain tumors: a pediatric brain tumor consortium study (PBTC-042). Pediatr Blood Cancer. 2021;68: e28879. https://doi.org/10.1002/pbc.28879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Miller TW, Traphagen NA, Li J, Lewis LD, Lopes B, Asthagiri A, et al. Tumor pharmacokinetics and pharmacodynamics of the CDK4/6 inhibitor ribociclib in patients with recurrent glioblastoma. J Neurooncol. 2019;144:563–72. https://doi.org/10.1007/s11060-019-03258-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. DeWire M, Fuller C, Hummel TR, Chow LML, Salloum R, de Blank P, et al. A phase I/II study of ribociclib following radiation therapy in children with newly diagnosed diffuse intrinsic pontine glioma (DIPG). J Neurooncol. 2020;149:511–22. https://doi.org/10.1007/s11060-020-03641-2.

    Article  CAS  PubMed  Google Scholar 

  112. Geoerger B, Bourdeaut F, DuBois SG, Fischer M, Geller JI, Gottardo NG, et al. A phase I study of the CDK4/6 inhibitor ribociclib (LEE011) in pediatric patients with malignant rhabdoid tumors, neuroblastoma, and other solid tumors. Clin Cancer Res. 2017;23:2433–41. https://doi.org/10.1158/1078-0432.CCR-16-2898.

    Article  CAS  PubMed  Google Scholar 

  113. Michel L, Ley J, Wildes TM, Schaffer A, Robinson A, Chun S-E, et al. Phase I trial of palbociclib, a selective cyclin dependent kinase 4/6 inhibitor, in combination with cetuximab in patients with recurrent/metastatic head and neck squamous cell carcinoma. Oral Oncol. 2016;58:41–8. https://doi.org/10.1016/j.oraloncology.2016.05.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Adkins D, Ley J, Neupane P, Worden F, Sacco AG, Palka K, et al. Palbociclib and cetuximab in platinum-resistant and in cetuximab-resistant human papillomavirus-unrelated head and neck cancer: a multicentre, multigroup, phase 2 trial. Lancet Oncol. 2019;20:1295–305. https://doi.org/10.1016/S1470-2045(19)30405-X.

    Article  CAS  PubMed  Google Scholar 

  115. Adkins D, Lin J-C, Sacco AG, Ley JC, Oppelt P, Shen Q, et al. Palbociclib plus cetuximab versus placebo plus cetuximab in platinum-resistant, cetuximab-naive, HPV-unrelated head and neck cancer: a double-blind randomized phase II trial (PALATINUS). JCO. 2019;37:6013–6013. https://doi.org/10.1200/JCO.2019.37.15_suppl.6013.

    Article  Google Scholar 

  116. Swiecicki PL, Durm G, Bellile E, Bhangale A, Brenner JC, Worden FP. A multi-center phase II trial evaluating the efficacy of palbociclib in combination with carboplatin for the treatment of unresectable recurrent or metastatic head and neck squamous cell carcinoma. Invest New Drugs. 2020;38:1550–8. https://doi.org/10.1007/s10637-020-00898-2.

    Article  CAS  PubMed  Google Scholar 

  117. Cohen EEW, Soulières D, Le Tourneau C, Dinis J, Licitra L, Ahn M-J, et al. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study. The Lancet. 2019;393:156–67. https://doi.org/10.1016/S0140-6736(18)31999-8.

    Article  CAS  Google Scholar 

  118. Ferris RL, Blumenschein G, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375:1856–67. https://doi.org/10.1056/NEJMoa1602252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mao L, Cao Y, Sheng X, Bai X, Chi Z, Cui C, et al. Palbociclib (P) in advanced acral lentiginous melanoma (ALM) with CDK4 pathway gene aberrations. JCO. 2019;37:9528–9528. https://doi.org/10.1200/JCO.2019.37.15_suppl.9528.

    Article  Google Scholar 

  120. Lao CD, Moon J, Fruehauf JP, Flaherty LE, Bury MJ, Ribas A, et al. SWOG S0826: a phase II trial of SCH 727965 (NSC 747135) in patients with stage IV melanoma. JCO. 2012;30:8521–8521. https://doi.org/10.1200/jco.2012.30.15_suppl.8521.

    Article  Google Scholar 

  121. Taylor M, Sosman J, Gonzalez R, Carlino MS, Kittaneh M, Lolkema MP, et al. 1086O - Phase Ib/Ii Study of Lee011 (Cdk4/6 Inhibitor) and Lgx818 (Braf Inhibitor) in Braf-Mutant Melanoma. Ann Oncol. 2014;25:374. https://doi.org/10.1093/annonc/mdu344.2.

    Article  Google Scholar 

  122. Diab A, Martin A, Simpson L, Algazi AP, Chawla P, Kim DW, et al. Phase I trial of the CDK 4/6 inhibitor, P1446A–05 (voruciclib) in combination with the BRAF inhibitor (BRAFi), vemurafenib in advanced, BRAF-mutant melanoma. JCO. 2015;33:9076–9076. https://doi.org/10.1200/jco.2015.33.15_suppl.9076.

    Article  Google Scholar 

  123. Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015;372:30–9. https://doi.org/10.1056/NEJMoa1412690.

    Article  CAS  PubMed  Google Scholar 

  124. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob J-J, Rutkowski P, Lao CD, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2019;381:1535–46. https://doi.org/10.1056/NEJMoa1910836.

    Article  CAS  PubMed  Google Scholar 

  125. Julve M, Clark JJ, Lythgoe MP. Advances in cyclin-dependent kinase inhibitors for the treatment of melanoma. Expert Opin Pharmacother. 2020. https://doi.org/10.1080/14656566.2020.1828348.

    Article  PubMed  Google Scholar 

  126. Schuler MH, Ascierto PA, De Vos FYFL, Postow MA, Van Herpen CML, Carlino MS, et al. Phase 1b/2 trial of ribociclib+binimetinib in metastatic NRAS-mutant melanoma: Safety, efficacy, and recommended phase 2 dose (RP2D). JCO. 2017;35:9519. https://doi.org/10.1200/JCO.2017.35.15_suppl.9519.

    Article  Google Scholar 

  127. Ascierto PA, Bechter O, Wolter P, Lebbe C, Elez E, Miller WH, et al. A phase Ib/II dose-escalation study evaluating triple combination therapy with a BRAF (encorafenib), MEK (binimetinib), and CDK 4/6 (ribociclib) inhibitor in patients (Pts) with BRAF V600-mutant solid tumors and melanoma. JCO. 2017;35:9518. https://doi.org/10.1200/JCO.2017.35.15_suppl.9518.

    Article  Google Scholar 

  128. Dummer R, Sandhu SK, Miller WH, Butler MO, Blank CU, Muñoz-Couselo E, et al. A phase II, multicenter study of encorafenib/binimetinib followed by a rational triple-combination after progression in patients with advanced BRAF V600-mutated melanoma (LOGIC2). JCO. 2020;38:10022–10022. https://doi.org/10.1200/JCO.2020.38.15_suppl.10022.

    Article  Google Scholar 

  129. Pavel M, Öberg K, Falconi M, Krenning EP, Sundin A, Perren A, et al. Gastroenteropancreatic neuroendocrine neoplasms: ESMO clinical practice guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2020;31:844–60. https://doi.org/10.1016/j.annonc.2020.03.304.

    Article  CAS  PubMed  Google Scholar 

  130. A Phase II Study of LEE011 (Ribociclib) in Patients With Advanced Neuroendocrine Tumors of Foregut Origin n.d. https://clinicaltrials.gov/ct2/show/NCT02420691. Accessed February 2, 2021.

  131. Grande E, Teulé A, Alonso-Gordoa T, Jiménez-Fonseca P, Benavent M, Capdevila J, et al. The PALBONET Trial: a phase II study of palbociclib in metastatic grade 1 and 2 pancreatic neuroendocrine tumors (GETNE-1407). Oncologist. 2020;25:745-e1265. https://doi.org/10.1634/theoncologist.2020-0033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Crago AM, Singer S. Clinical and molecular approaches to well-differentiated and dedifferentiated liposarcoma. Curr Opin Oncol. 2011;23:373–8. https://doi.org/10.1097/CCO.0b013e32834796e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dickson MA, Tap WD, Keohan ML, D’Angelo SP, Gounder MM, Antonescu CR, et al. Phase II trial of the CDK4 inhibitor PD0332991 in patients with advanced CDK4-amplified well-differentiated or dedifferentiated liposarcoma. J Clin Oncol. 2013;31:2024–8. https://doi.org/10.1200/JCO.2012.46.5476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Dickson MA, Schwartz GK, Keohan ML, D’Angelo SP, Gounder MM, Chi P, et al. Phase 2 trial of the CDK4 inhibitor palbociclib (PD0332991) at 125 mg dose in well-differentiated or dedifferentiated liposarcoma. JAMA Oncol. 2016;2:937–40. https://doi.org/10.1001/jamaoncol.2016.0264.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Schöffski P, Ray-Coquard IL, Cioffi A, Bui NB, Bauer S, Hartmann JT, et al. Activity of eribulin mesylate in patients with soft-tissue sarcoma: a phase 2 study in four independent histological subtypes. Lancet Oncol. 2011;12:1045–52. https://doi.org/10.1016/S1470-2045(11)70230-3.

    Article  CAS  PubMed  Google Scholar 

  136. Demetri GD, von Mehren M, Jones RL, Hensley ML, Schuetze SM, Staddon A, et al. Efficacy and safety of trabectedin or dacarbazine for metastatic liposarcoma or leiomyosarcoma after failure of conventional chemotherapy: results of a phase III randomized multicenter clinical trial. J Clin Oncol. 2016;34:786–93. https://doi.org/10.1200/JCO.2015.62.4734.

    Article  CAS  PubMed  Google Scholar 

  137. Schöffski P, Chawla S, Maki RG, Italiano A, Gelderblom H, Choy E, et al. Eribulin versus dacarbazine in previously treated patients with advanced liposarcoma or leiomyosarcoma: a randomised, open-label, multicentre, phase 3 trial. Lancet. 2016;387:1629–37. https://doi.org/10.1016/S0140-6736(15)01283-0.

    Article  CAS  PubMed  Google Scholar 

  138. National Comprehensive Cancer Network. Soft Tissue Sarcoma (Version 1.2021) n.d. https://www.nccn.org/professionals/physician_gls/pdf/sarcoma.pdf. Accessed January 24, 2021.

  139. Dickson MA, Koff A, D’Angelo SP, Gounder MM, Keohan ML, Kelly CM, et al. Phase 2 study of the CDK4 inhibitor abemaciclib in dedifferentiated liposarcoma. JCO. 2019;37:11004–11004. https://doi.org/10.1200/JCO.2019.37.15_suppl.11004.

    Article  Google Scholar 

  140. Davis LE, Latour E, Burch R, Park B, Davis JL, Ryan CW. A phase Ib study of ribociclib in combination with doxorubicin in advanced soft tissue sarcomas (aSTS). JCO. 2020;38:11548–11548. https://doi.org/10.1200/JCO.2020.38.15_suppl.11548.

    Article  Google Scholar 

  141. Movva S, von Mehren M, Handorf EA, Morgan JA, Nathenson M, Thornton KA, et al. SAR-096: a phase II trial of ribociclib in combination with everolimus in advanced dedifferentiated liposarcoma (DDL), and leiomyosarcoma (LMS). JCO. 2020;38:11544–11544. https://doi.org/10.1200/JCO.2020.38.15_suppl.11544.

    Article  Google Scholar 

  142. Ray-Coquard I, Morice P, Lorusso D, Prat J, Oaknin A, Pautier P, et al. Non-epithelial ovarian cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2018;29:iv1-18. https://doi.org/10.1093/annonc/mdy001.

    Article  CAS  PubMed  Google Scholar 

  143. Oldenburg J, Fosså SD, Nuver J, Heidenreich A, Schmoll H-J, Bokemeyer C, et al. Testicular seminoma and non-seminoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2013;24:vi125–32. https://doi.org/10.1093/annonc/mdt304.

    Article  PubMed  Google Scholar 

  144. Castellano DE, Quinn DI, Feldman DR, Fizazi K, Garcia del Muro X, Gietema JA, et al. A phase II study of ribociclib in men with unresectable, incurable teratoma with recent progression. JCO. 2019;37:517. https://doi.org/10.1200/JCO.2019.37.7_suppl.517.

    Article  Google Scholar 

  145. Vaughn DJ, Hwang W-T, Lal P, Rosen MA, Gallagher M, O’Dwyer PJ. Phase 2 trial of the cyclin-dependent kinase 4/6 inhibitor palbociclib in patients with retinoblastoma protein-expressing germ cell tumors. Cancer. 2015;121:1463–8. https://doi.org/10.1002/cncr.29213.

    Article  CAS  PubMed  Google Scholar 

  146. Narayan V, Hwang W-T, Lal P, Rosen MA, Gallagher M, O’Dwyer PJ, et al. Cyclin-dependent kinase 4/6 inhibition for the treatment of unresectable mature teratoma: long-term follow-up of a phase II study. Clin Genitourin Cancer. 2016;14:504–10. https://doi.org/10.1016/j.clgc.2016.03.010.

    Article  PubMed  Google Scholar 

  147. Sava GP, Fan H, Coombes RC, Buluwela L, Ali S. CDK7 inhibitors as anticancer drugs. Cancer Metastasis Rev. 2020;39:805–23. https://doi.org/10.1007/s10555-020-09885-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bartkova J, Zemanova M, Bartek J. Expression of CDK7/CAK in normal and tumor cells of diverse histogenesis, cell-cycle position and differentiation. Int J Cancer. 1996;66:732–7. https://doi.org/10.1002/(SICI)1097-0215(19960611)66:6%3c732::AID-IJC4%3e3.0.CO;2-0.

    Article  CAS  PubMed  Google Scholar 

  149. Spring LM, Wander SA, Andre F, Moy B, Turner NC, Bardia A. Cyclin-dependent kinase 4 and 6 inhibitors for hormone receptor-positive breast cancer: past, present, and future. Lancet. 2020;395:817–27. https://doi.org/10.1016/S0140-6736(20)30165-3.

    Article  CAS  PubMed  Google Scholar 

  150. Spring LM, Zangardi ML, Moy B, Bardia A. Clinical management of potential toxicities and drug interactions related to cyclin-dependent kinase 4/6 inhibitors in breast cancer: practical considerations and recommendations. Oncologist. 2017;22:1039–48. https://doi.org/10.1634/theoncologist.2017-0142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Gomatou G, Trontzas I, Ioannou S, Drizou M, Syrigos N, Kotteas E. Mechanisms of resistance to cyclin-dependent kinase 4/6 inhibitors. Mol Biol Rep. 2021;48:915–25. https://doi.org/10.1007/s11033-020-06100-3.

    Article  CAS  PubMed  Google Scholar 

  152. Kovatcheva M, Liu DD, Dickson MA, Klein ME, O’Connor R, Wilder FO, et al. MDM2 turnover and expression of ATRX determine the choice between quiescence and senescence in response to CDK4 inhibition. Oncotarget. 2015;6:8226–43. https://doi.org/10.18632/oncotarget.3364.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Zhang M, Zhang L, Hei R, Li X, Cai H, Wu X, et al. CDK inhibitors in cancer therapy, an overview of recent development. Am J Cancer Res. 2021;11:1913–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Álvarez-Fernández M, Malumbres M. Mechanisms of sensitivity and resistance to CDK4/6 inhibition. Cancer Cell. 2020;37:514–29. https://doi.org/10.1016/j.ccell.2020.03.010.

    Article  CAS  PubMed  Google Scholar 

  155. Wander SA, Cohen O, Gong X, Johnson GN, Buendia-Buendia JE, Lloyd MR, et al. The genomic landscape of intrinsic and acquired resistance to cyclin-dependent kinase 4/6 inhibitors in patients with hormone receptor-positive metastatic breast cancer. Cancer Discov. 2020;10:1174–93. https://doi.org/10.1158/2159-8290.CD-19-1390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. McLaughlin RP, He J, van der Noord VE, Redel J, Foekens JA, Martens JWM, et al. A kinase inhibitor screen identifies a dual cdc7/CDK9 inhibitor to sensitise triple-negative breast cancer to EGFR-targeted therapy. Breast Cancer Res. 2019;21:77. https://doi.org/10.1186/s13058-019-1161-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Poon E, Liang T, Jamin Y, Walz S, Kwok C, Hakkert A, et al. Orally bioavailable CDK9/2 inhibitor shows mechanism-based therapeutic potential in MYCN-driven neuroblastoma. J Clin Invest. 2020;130:5875–92. https://doi.org/10.1172/JCI134132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Liu H, Shin SH, Chen H, Liu T, Li Z, Hu Y, et al. CDK12 and PAK2 as novel therapeutic targets for human gastric cancer. Theranostics. 2020;10:6201–15. https://doi.org/10.7150/thno.46137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Quereda V, Bayle S, Vena F, Frydman SM, Monastyrskyi A, Roush WR, et al. Therapeutic targeting of CDK12/CDK13 in triple-negative breast cancer. Cancer Cell. 2019;36:545-558.e7. https://doi.org/10.1016/j.ccell.2019.09.004.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception of this manuscript. EP performed the literature search. EK supervised the study. All authors revised and approved the final version of the manuscript.

Corresponding author

Correspondence to E. Panagiotou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human or animal subjects performed by any of the authors.

Informed Consent

For this type of study, formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panagiotou, E., Gomatou, G., Trontzas, I.P. et al. Cyclin-dependent kinase (CDK) inhibitors in solid tumors: a review of clinical trials. Clin Transl Oncol 24, 161–192 (2022). https://doi.org/10.1007/s12094-021-02688-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02688-5

Keywords

Navigation