Skip to main content

Advertisement

Log in

Medical ozone induces proliferation and migration inhibition through ROS accumulation and PI3K/AKT/NF-κB suppression in human liver cancer cells in vitro

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Hepatocellular carcinoma is one of the most common malignancies and leading cancer-associated deaths worldwide. Ozone has been proposed as a promising therapeutic agent in the treatment of various disorders.

Purpose

The purpose of this paper is to assess the potential anticancer effects of the ozone on liver cancer cells.

Method

The liver cancer cell line of bel7402 and SMMC7721 was used in this study. Proliferation was evaluated using the CCK-8 and the colony formation assay. Wond healing assay and transwell assay without Matrigel were used to evaluate their migration ability. Flow cytometry was used for cell cycle analysis and reactive oxygen species (ROS) determination. Glutathione detection kit was used for measurement of glutathione level. Protein expression was estimated by western blot analysis.

Results

Ozone treatment inhibited liver cancer cell proliferation, colony formation. Ozone induced G2/M phase cell cycle arrest, which could be elucidated by the change of protein levels of p53, p21, Cyclin D1, cyclin B1, cdc2, and CDK4. We also found that ozone treatment inhibited migration ability by inhibiting EMT-relating protein. Ozone also induced ROS accumulation and decreased glutathione level decreased, which contributed to the inactivation of the PI3K/AKT/NF-κB pathway. Finally, we found that pre-treatment of liver cancer cells with N-acetylcysteine resisted ozone-induced effects.

Conclusions

Ozone restrains the proliferation and migration potential and EMT process of liver cancer cells via ROS accumulation and PI3K/AKT/NF-κB suppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Byam J, Renz J, Millis JM. Liver transplantation for hepatocellular carcinoma. Hepatobil Surg Nutr. 2013;2(1):22–30. https://doi.org/10.3978/j.issn.2304-3881.2012.11.03.

    Article  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.

    Article  PubMed  Google Scholar 

  3. Vogel A, Cervantes A, Chau I, Daniele B, Llovet JM, Meyer T, et al. Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;30(5):871–3. https://doi.org/10.1093/annonc/mdy510.

    Article  PubMed  Google Scholar 

  4. Buric J, Berjano P, Damilano M. Severe spinal surgery infection and local ozone therapy as complementary treatment: a case report. Int J Spine Surg. 2019;13(4):371–6. https://doi.org/10.14444/6050.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zeng J, Lu J. Mechanisms of action involved in ozone-therapy in skin diseases. Int Immunopharmacol. 2018;56:235–41. https://doi.org/10.1016/j.intimp.2018.01.040.

    Article  CAS  PubMed  Google Scholar 

  6. Clavo B, Rodríguez-Esparragón F, Rodríguez-Abreu D, Martínez-Sánchez G, Llontop P, Aguiar-Bujanda D, et al. Modulation of oxidative stress by ozone therapy in the prevention and treatment of chemotherapy-induced toxicity: review and prospects. Antioxidants (Basel, Switzerland). 2019;8(12):588. https://doi.org/10.3390/antiox8120588.

    Article  CAS  Google Scholar 

  7. Taşdöven İ, Emre AU, Ayça Gültekin F, Öner MÖ, Bakkal BH, Türkcü ÜÖ, et al. Effects of ozone preconditioning on recovery of rat colon anastomosis after preoperative radiotherapy. Adv Clin Exp Med. 2019;28(12):1683–9. https://doi.org/10.17219/acem/110329.

    Article  PubMed  Google Scholar 

  8. Clavo B, Santana-Rodríguez N, Llontop P, Gutiérrez D, Suárez G, López L, et al. Ozone therapy as adjuvant for cancer treatment: is further research warranted? Evid Based Complement Alternat Med. 2018. https://doi.org/10.1155/2018/7931849.

    Article  PubMed  PubMed Central  Google Scholar 

  9. de Sá Junior PL, Câmara DAD, Porcacchia AS, Fonseca PMM, Jorge SD, Araldi RP, et al. The roles of ROS in cancer heterogeneity and therapy. Oxid Med Cell Longev. 2017. https://doi.org/10.1155/2017/2467940.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang N, Wu Y, Bian J, Qian X, Lin H, Sun H, et al. Current development of ROS-modulating agents as novel antitumor therapy. Curr Cancer Drug Tar. 2017;17(2):122–36. https://doi.org/10.2174/1568009616666160216125833.

    Article  CAS  Google Scholar 

  11. Dröse S, Brandt U. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv Exp Med Biol. 2012;748:145–69. https://doi.org/10.1007/978-1-4614-3573-0_6.

    Article  CAS  PubMed  Google Scholar 

  12. Sauer H, Wartenberg M, Hescheler J. Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem. 2001;11(4):173–86. https://doi.org/10.1159/000047804.

    Article  CAS  PubMed  Google Scholar 

  13. Sun SC, Xiao G. Deregulation of NF-kappaB and its upstream kinases in cancer. Cancer Metastasis Rev. 2003;22(4):405–22. https://doi.org/10.1023/a:1023733231406.

    Article  CAS  PubMed  Google Scholar 

  14. Scassellati C, Ciani M, Galoforo AC, Zanardini R, Bonvicini C, Geroldi C. Molecular mechanisms in cognitive frailty: potential therapeutic targets for oxygen-ozone treatment. Mech Ageing Dev. 2020;186:111210. https://doi.org/10.1016/j.mad.2020.111210.

    Article  CAS  PubMed  Google Scholar 

  15. Bocci V, Borrelli E, Travagli V, Zanardi I. The ozone paradox: ozone is a strong oxidant as well as a medical drug. Med Res Rev. 2009;29(4):646–82. https://doi.org/10.1002/med.20150.

    Article  CAS  PubMed  Google Scholar 

  16. Megele R, Riemenschneider MJ, Dodoo-Schittko F, Feyrer M, Kleindienst A. Intra-tumoral treatment with oxygen-ozone in glioblastoma: a systematic literature search and results of a case series. Oncol Lett. 2018;16(5):5813–22. https://doi.org/10.3892/ol.2018.9397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Teke K, Ozkan TA, Cebeci OO, Yilmaz H, Keles ME, Ozkan L, et al. Preventive effect of intravesical ozone supplementation on n-methyl-n-nitrosourea-induced non-muscle invasive bladder cancer in male rats. Exp Anim Tokyo. 2017;66(3):191–8. https://doi.org/10.1538/expanim.16-0093.

    Article  CAS  Google Scholar 

  18. Simonetti V, Quagliariello V, Franzini M, Iaffaioli RV, Maurea N, Valdenassi L. Ozone exerts cytoprotective and anti-inflammatory effects in cardiomyocytes and skin fibroblasts after incubation with doxorubicin. Evid Based Complement Altern Med. 2019. https://doi.org/10.1155/2019/2169103.

    Article  Google Scholar 

  19. Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8(7):579–91. https://doi.org/10.1038/nrd2803.

    Article  CAS  PubMed  Google Scholar 

  20. Chiu J, Dawes IW. Redox control of cell proliferation. Trends Cell Biol. 2012;22(11):592–601. https://doi.org/10.1016/j.tcb.2012.08.002.

    Article  CAS  PubMed  Google Scholar 

  21. Liu Y, Fan D. Ginsenoside Rg5 induces G2/M phase arrest, apoptosis and autophagy via regulating ROS-mediated MAPK pathways against human gastric cancer. Biochem Pharmacol. 2019;168:285–304. https://doi.org/10.1016/j.bcp.2019.07.008.

    Article  CAS  PubMed  Google Scholar 

  22. Kosmider B, Loader JE, Murphy RC, Mason RJ. Apoptosis induced by ozone and oxysterols in human alveolar epithelial cells. Free Radical Biol Med. 2010;48(11):1513–24. https://doi.org/10.1016/j.freeradbiomed.2010.02.032.

    Article  CAS  Google Scholar 

  23. Selivanova G. Wild type p53 reactivation: from lab bench to clinic. Febs Lett. 2014;588(16):2628–38. https://doi.org/10.1016/j.febslet.2014.03.049.

    Article  CAS  PubMed  Google Scholar 

  24. Cj S, Jm R. Living with or without cyclins and cyclin-dependent kinases. Gene Dev. 2004;18(22):2699–711. https://doi.org/10.1101/gad.1256504.

    Article  CAS  Google Scholar 

  25. Hydbring P, Malumbres M, Sicinski P. Non-canonical functions of cell cycle cyclins and cyclin-dependent kinases. Nat Rev Mol Cell Biol. 2016;17(5):280–92. https://doi.org/10.1038/nrm.2016.27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ge P, Ji X, Ding Y, Wang X, Fu S, Meng F, et al. Celastrol causes apoptosis and cell cycle arrest in rat glioma cells. Neurol Res. 2010;32(1):94–100. https://doi.org/10.1179/016164109X12518779082273.

    Article  CAS  PubMed  Google Scholar 

  27. Ning N, Liu S, Liu X, Tian Z, Jiang Y, Yu N, et al. Curcumol inhibits the proliferation and metastasis of melanoma via the miR-152-3p/PI3K/AKT and ERK/NF-κB signaling pathways. J Cancer. 2020;11(7):1679–92. https://doi.org/10.7150/jca.38624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. DiDonato JA, Mercurio F, Karin M. NF-κB and the link between inflammation and cancer. Immunol Rev. 2012;246(1):379–400. https://doi.org/10.1111/j.1600-065X.2012.01099.x.

    Article  CAS  PubMed  Google Scholar 

  29. Park MH, Hong J. Roles of NF-κB in cancer and inflammatory diseases and their therapeutic approaches. Cells-Basel. 2016;5(2):15. https://doi.org/10.3390/cells5020015.

    Article  CAS  Google Scholar 

  30. Markopoulos G, Roupakia E, Tokamani M, Alabasi G, Sandaltzopoulos R, Marcu K, et al. Roles of NF-κB signaling in the regulation of miRNAs impacting on inflammation in cancer. Biomedicines. 2018;6(2):40. https://doi.org/10.3390/biomedicines6020040.

    Article  CAS  PubMed Central  Google Scholar 

  31. Chen S, Sun KX, Feng MX, Sang XB, Liu BL, Zhao Y. Role of glycogen synthase kinase-3β inhibitor AZD1080 in ovarian cancer. Drug Design Dev Ther. 2016;10:1225–32. https://doi.org/10.2147/DDDT.S102506.

    Article  CAS  Google Scholar 

  32. Gedaly R, Galuppo R, Daily MF, Shah M, Maynard E, Chen C, et al. Targeting the Wnt/β-catenin signaling pathway in liver cancer stem cells and hepatocellular carcinoma cell lines with FH535. PLoS ONE. 2014;9(6):e99272. https://doi.org/10.1371/journal.pone.0099272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tokés AM, Kulka J, Paku S, Szik A, Páska C, Novák PK, et al. Claudin-1, -3 and -4 proteins and mRNA expression in benign and malignant breast lesions: a research study. Breast Cancer Res. 2005;7(2):R296–305. https://doi.org/10.1186/bcr983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Strouhalova K, Přechová M, Gandalovičová A, Brábek J, Gregor M, Rosel D. Vimentin intermediate filaments as potential target for cancer treatment. Cancers. 2020;12(1):184. https://doi.org/10.3390/cancers12010184.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. He.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Ethical approval

This study did not involve human participants and animals.

Informed consent

For this type of study, no informed consent is required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zeng, T., Tang, S. et al. Medical ozone induces proliferation and migration inhibition through ROS accumulation and PI3K/AKT/NF-κB suppression in human liver cancer cells in vitro. Clin Transl Oncol 23, 1847–1856 (2021). https://doi.org/10.1007/s12094-021-02594-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02594-w

Keywords

Navigation