Skip to main content
Log in

LINC01255 combined with BMI1 to regulate human mesenchymal stromal senescence and acute myeloid leukemia cell proliferation through repressing transcription of MCP-1

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Long non-coding RNAs (lncRNAs) govern fundamental biochemical and cellular biology processes, for example, participate in chromatin remodeling, imprinting, splicing, transcriptional regulation and translation. Dysregulation of lncRNA expression is act as a feature of various diseases and cancers, including hematopoietic malignancies. However, the clinical relevance of myelodysplastic syndrome (MDS) and acute myeloid leukemia preceded by MDS (MDS-AML) requires further research. Recently, lncRNAs have been demonstrated, which play an important role in hematopoiesis, thus, to further finding more functional lncRNA seemed particularly important.

Methods

Western blotting, real-time PCR, RNA-pulldown, RIP (RNA immunoprecipitation), Chromatin immunoprecipitation (ChIP), cellular compartments extraction assays, SA-β-gal staining, lentivirus transfection, cell viability assay and cell proliferation assays were used to examine the relationship between lncRNA LINC01255 and its regulation of p53–p21 pathway in human mesenchymal stromal and acute myeloid leukemia cells.

Results

LncRNA LINC01255 is highly expressed in bone marrow cells of AML patients, CD34+ cells of MDS-AML patients and AML cell lines and the higher expression of LINC01255 is associated with poor survival rate of AML patients. LINC01255 can interact with BMI1 and repress the transcription of MCP-1 to active p53–p21 pathway, thus inhibiting the senescence of human mesenchymal stromal and proliferation of acute myeloid leukemia cell.

Conclusions

We discovered a novel functional lncRNA LINC01255, which can regulate the senescence of human mesenchymal stromal and the proliferation of acute myeloid leukemia cell through inhibiting the transcription of MCP-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All relevant data are available from the authors on request.

Abbreviations

MDS:

Myelodysplastic syndromes

AML:

Acute myeloid leukemia

IPSS:

International prognostic scoring system

IPSS-R:

International prognostic scoring system (IPSS) the revised IPSS

ELN:

European Leukemia Net

ncRNAs:

Non-coding RNAs

miRNAs:

MicroRNAs

piRNAs:

PIWI-interacting RNAs

siRNAs:

Small interfering RNA

snRNAs:

Small nuclear RNAs

snoRNAs:

Small nucleolar RNAs

lncRNAs:

Long non-coding RNAs

BMI1:

B Lymphoma Mo-MLV Insertion Region 1

UCB-MSCs:

Umbilical cord blood-derived MSCs

RIP:

RNA immunoprecipitation

SASP:

Senescence-associated secretory phenotype

MSC:

Human mesenchymal stromal cells

References

  1. Arber DA, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.

    CAS  PubMed  Google Scholar 

  2. Zhao X, et al. An integrated regulatory network based on comprehensive analysis of mRNA expression, gene methylation and expression of long non-coding RNAs (lncRNAs) in myelodysplastic syndromes. Front Oncol. 2019;9:200.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Huang HH, et al. Long non-coding RNA HOXB-AS3 promotes myeloid cell proliferation and its higher expression is an adverse prognostic marker in patients with acute myeloid leukemia and myelodysplastic syndrome. BMC Cancer. 2019;19:617.

    PubMed  PubMed Central  Google Scholar 

  4. Larsson CA, Cote G, Quintas-Cardama A. The changing mutational landscape of acute myeloid leukemia and myelodysplastic syndrome. Mol Cancer Res. 2013;11:815–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zeidan AM, et al. Disease-related costs of care and survival among medicare-enrolled patients with myelodysplastic syndromes. Cancer. 2016;122:1598–607.

    PubMed  Google Scholar 

  6. Greenberg P, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89:2079–88.

    CAS  PubMed  Google Scholar 

  7. Voso MT, et al. Revised International Prognostic Scoring System (IPSS) predicts survival and leukemic evolution of myelodysplastic syndromes significantly better than IPSS and WHO Prognostic Scoring System: validation by the Gruppo Romano Mielodisplasie Italian Regional Database. J Clin Oncol. 2013;31:2671–7.

    PubMed  Google Scholar 

  8. Della Porta MG, et al. Validation of WHO classification-based Prognostic Scoring System (WPSS) for myelodysplastic syndromes and comparison with the revised International Prognostic Scoring System (IPSS-R). A study of the International Working Group for Prognosis in Myelodysplasia (IWG-PM). Leukemia. 2015;29:1502–13.

    CAS  PubMed  Google Scholar 

  9. de Swart L, et al. Validation of the revised international prognostic scoring system (IPSS-R) in patients with lower-risk myelodysplastic syndromes: a report from the prospective European LeukaemiaNet MDS (EUMDS) registry. Br J Haematol. 2015;170:372–83.

    PubMed  Google Scholar 

  10. Dohner H, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129:424–47.

    PubMed  PubMed Central  Google Scholar 

  11. Estey E. Acute myeloid leukemia: 2016 update on risk-stratification and management. Am J Hematol. 2016;91:824–46.

    PubMed  Google Scholar 

  12. Hou HA, et al. Incorporation of mutations in five genes in the revised International Prognostic Scoring System can improve risk stratification in the patients with myelodysplastic syndrome. Blood Cancer J. 2018;8:39.

    PubMed  PubMed Central  Google Scholar 

  13. Alhan C, et al. The myelodysplastic syndromes flow cytometric score: a three-parameter prognostic flow cytometric scoring system. Leukemia. 2016;30:658–65.

    CAS  PubMed  Google Scholar 

  14. Hainer SJ, et al. Suppression of pervasive noncoding transcription in embryonic stem cells by esBAF. Genes Dev. 2015;29:362–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Spornraft M, Kirchner B, Pfaffl MW, Riedmaier I. Comparison of the miRNome and piRNome of bovine blood and plasma by small RNA sequencing. Biotechnol Lett. 2015;37:1165–76.

    CAS  PubMed  Google Scholar 

  16. Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15:7–21.

    CAS  PubMed  Google Scholar 

  17. Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future. Genetics. 2013;193:651–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang X, et al. A myelopoiesis-associated regulatory intergenic noncoding RNA transcript within the human HOXA cluster. Blood. 2009;113:2526–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zeng C, et al. Inhibition of long non-coding RNA NEAT1 impairs myeloid differentiation in acute promyelocytic leukemia cells. BMC Cancer. 2014;14:693.

    PubMed  PubMed Central  Google Scholar 

  20. Yildirim E, et al. Xist RNA is a potent suppressor of hematologic cancer in mice. Cell. 2013;152:727–42.

    CAS  PubMed  Google Scholar 

  21. Rodriguez-Malave NI, Rao DS. Long noncoding RNAs in hematopoietic malignancies. Brief Funct Genomics. 2016;15:227–38.

    CAS  PubMed  Google Scholar 

  22. Zhang X, et al. Maternally expressed gene 3 (MEG3) noncoding ribonucleic acid: isoform structure, expression, and functions. Endocrinology. 2010;151:939–47.

    CAS  PubMed  Google Scholar 

  23. You D, et al. MicroRNA-498 inhibits the proliferation, migration and invasion of gastric cancer through targeting BMI-1 and suppressing AKT pathway. Hum Cell. 2020;33:366–76.

    CAS  PubMed  Google Scholar 

  24. Zhang S, et al. LncRNA NR2F2-AS1 promotes tumourigenesis through modulating BMI1 expression by targeting miR-320b in non-small cell lung cancer. J Cell Mol Med. 2019;23:2001–11.

    CAS  PubMed  Google Scholar 

  25. Fang J, et al. LncRNA CASC9 suppressed the apoptosis of gastric cancer cells through regulating BMI1. Pathol Oncol Res 2020;26:475–482. https://doi.org/10.1007/s12253-019-00703-3.

    Article  CAS  PubMed  Google Scholar 

  26. Liu G, et al. LncRNA ZFAS1 promotes growth and metastasis by regulating BMI1 and ZEB2 in osteosarcoma. Am J Cancer Res. 2017;7:1450–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Mihara K, et al. Bmi-1 is useful as a novel molecular marker for predicting progression of myelodysplastic syndrome and patient prognosis. Blood. 2006;107:305–8.

    CAS  PubMed  Google Scholar 

  28. Petrov VN, et al. In Vivo effects of human bone marrow mesenchymal stromal cells on the development of experimental B16 melanoma in mice. Bull Exp Biol Med 2020;168:561–565. https://doi.org/10.1007/s10517-020-04753-5.

    Article  CAS  PubMed  Google Scholar 

  29. Gomez-Barrena E, et al. Early efficacy evaluation of mesenchymal stromal cells (MSC) combined to biomaterials to treat long bone non-unions. Injury 2020;1:S63-S73. https://doi.org/10.1016/j.injury.2020.02.070.

    Article  Google Scholar 

  30. Yagura K, et al. The enhancement of CCL2 and CCL5 by human bone marrow-derived mesenchymal stem/stromal cells might contribute to inflammatory suppression and axonal extension after spinal cord injury. PLoS ONE. 2020;15:e0230080.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Simon MD, et al. The genomic binding sites of a noncoding RNA. Proc Natl Acad Sci USA 2011;108:20497–20502.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Shang Z, et al. USP9X-mediated deubiquitination of B-cell CLL/lymphoma 9 potentiates Wnt signaling and promotes breast carcinogenesis. J Biol Chem. 2019;294:9844–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang H, et al. Differential gene regulation by the SRC family of coactivators. Genes Dev. 2004;18:1753–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Khawar MB, Mehmood R, Abbasi MH, Sheikh N. Multifactorial role of long non-coding RNAs (LncRNAs) in hematopoiesis. Front Biosci (Schol Ed). 2018;10:119–26.

    Google Scholar 

  35. Cheng H, et al. Microarray profiling and co-expression network analysis of the lncRNAs and mRNAs associated with acute leukemia in adults. Mol BioSyst. 2017;13:1102–8.

    CAS  PubMed  Google Scholar 

  36. Bracken AP, et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. 2007;21:525–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Molofsky AV, et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature. 2003;425:962–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Jin HJ, et al. Senescence-associated MCP-1 secretion is dependent on a decline in BMI1 in human mesenchymal stromal cells. Antioxid Redox Signal. 2016;24:471–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Rizo A, et al. Repression of BMI1 in normal and leukemic human CD34(+) cells impairs self-renewal and induces apoptosis. Blood. 2009;114:1498–505.

    CAS  PubMed  Google Scholar 

  40. El-Sharnouby S, Redhouse J, White RA. Genome-wide and cell-specific epigenetic analysis challenges the role of polycomb in drosophila spermatogenesis. PLoS Genet. 2013;9:e1003842.

    PubMed  PubMed Central  Google Scholar 

  41. Oguro H, et al. Differential impact of Ink4a and Arf on hematopoietic stem cells and their bone marrow microenvironment in Bmi1-deficient mice. J Exp Med. 2006;203:2247–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ganau M, et al. How nanotechnology and biomedical engineering are supporting the identification of predictive biomarkers in Neuro-Oncology. Med Basel 2018;26;5:23. https://doi.org/10.3390/medicines5010023.

    Article  CAS  Google Scholar 

  43. Merle M, et al. Serum Chemokine-release profiles in AML-patients might contribute to predict the clinical course of the disease. Immunol Invest 2020;49:365–385. https://doi.org/10.1080/08820139.2019.1661429.

    Article  CAS  PubMed  Google Scholar 

  44. Yoshimura T. The production of monocyte chemoattractant protein-1 (MCP-1)/CCL2 in tumor microenvironments. Cytokine. 2017;98:71–8.

    CAS  PubMed  Google Scholar 

  45. Li X, et al. A destructive cascade mediated by CCL2 facilitates prostate cancer growth in bone. Cancer Res. 2009;69:1685–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Fujimoto H, et al. Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression. Int J Cancer. 2009;125:1276–84.

    CAS  PubMed  Google Scholar 

  47. Kitamura T, et al. CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. J Exp Med. 2015;212:1043–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wiseman BS, Werb Z. Stromal effects on mammary gland development and breast cancer. Science (New York, N.Y.). 2002;296:1046–9.

    CAS  Google Scholar 

Download references

Funding

This study was supported by Medical and Health Science and Technology Development Project of Shandong (2018WS122), Science and Technology Development Plan (guidance plan) of Taian (2018NS0123), 2019–2020 Chinese Medicine Science and Technology Development Project of Shandong (2019–0343).

Author information

Authors and Affiliations

Authors

Contributions

HZ conceived this project; QL, HZ, JD, JL, YD, KW and QK conducted experiments; QL and HZ acquired and analysed data; HZ wrote the manuscript.

Corresponding author

Correspondence to H. Zhang.

Ethics declarations

Conflicts of interest

The authors have declared that no conflict of interest exists.

Ethics approval and Informed consent

Ethics approval and consent files and Subject Informed Consent Certification file were offered in supplemental files.

Research involving human participants and/or animals

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 kb)

Supplementary file2 (XLSX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Dong, J., Li, J. et al. LINC01255 combined with BMI1 to regulate human mesenchymal stromal senescence and acute myeloid leukemia cell proliferation through repressing transcription of MCP-1. Clin Transl Oncol 23, 1105–1116 (2021). https://doi.org/10.1007/s12094-020-02505-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-020-02505-5

Keywords

Navigation