Skip to main content

Advertisement

Log in

Tumor microenvironment, immune response and post-radiotherapy tumor clearance

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Radiotherapy is the treatment of choice for many cancer patients. Residual tumor leads to local recurrence after a period of an equilibrium created between proliferating, quiescent and dying cancer cells. The tumor microenvironment is a main obstacle for the efficacy of radiotherapy, as impaired blood flow leads to hypoxia, acidity and reduced accessibility of radiosensitizers. Eradication of remnant disease is an intractable clinical quest. After more than a century of research, anti-tumor immunity has gained a dominant position in oncology research and therapy. Immune cells play a significant role in the eradication of tumors during and after the completion of radiotherapy. The tumor equilibrium reached in the irradiated tumor may shift towards cancer cell eradication if the immune response is appropriately modulated. In the modern immunotherapy era, clinical trials are urged to standardize immunotherapy schemes that could be safely applied to improve clearance of the post-radiotherapy remnant disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Presented data are available in the data archives of our Department.

References

  1. Grubbe AH (obituary). Br Med J. 1960;2:609.

  2. Moris L, Cumberbatch MG, Van den Broeck T, Gandaglia G, Fossati N, Kelly B, Pal R, Briers E, Cornford P, De Santis M, Fanti S, Gillessen S, Grummet JP, Henry AM, Lam TBL, Lardas M, Liew M, Mason MD, Omar MI, Rouvière O, Schoots IG, Tilki D, van den Bergh RCN, van Der Kwast TH, van Der Poel HG, Willemse PM, Yuan CY, Konety B, Dorff T, Jain S, Mottet N, Wiegel T. Benefits and risks of primary treatments for high-risk localized and locally advanced prostate cancer: an international multidisciplinary systematic review. Eur Urol. 2020;77:614–27.

    CAS  PubMed  Google Scholar 

  3. Maier P, Hartmann L, Wenz F, Herskind C. Cellular Pathways in Response to Ionizing Radiation and Their Targetability for Tumor Radiosensitization. Int J Mol Sci. 2016;17(1):E102.

  4. Kim W, Lee S, Seo D, Kim D, Kim K, Kim E, Kang J, Seong KM, Youn H, Youn B. Cellular stress responses in radiotherapy. Cells. 2019;8(9):E1105.

    PubMed  Google Scholar 

  5. Mitrakas AG, Kalamida D, Giatromanolaki A, Pouliliou S, Tsolou A, Kyranas R, Koukourakis MI. Autophagic flux response and glioblastoma sensitivity to radiation. Cancer Biol Med. 2018;15:260–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Koukourakis MI, Mitrakas AG, Giatromanolaki A. Therapeutic interactions of autophagy with radiation and temozolomide in glioblastoma: evidence and issues to resolve. Br J Cancer. 2016;114:485–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Giatromanolaki A, Sivridis E, Koukourakis MI. The pathology of tumor stromatogenesis. Cancer Biol Ther. 2007;6:639–45.

    CAS  PubMed  Google Scholar 

  8. Koukourakis MI, Giatromanolaki A, Harris AL, Sivridis E. Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Res. 2006;15(66):632–7.

    Google Scholar 

  9. Giatromanolaki A, Sivridis E, Koukourakis MI. Tumour angiogenesis: vascular growth and survival. APMIS. 2004;112:431–40.

    PubMed  Google Scholar 

  10. Aboagye EO, Saleem A, Cunningham VJ, Osman S, Price PM. Extraction of 5-fluorouracil by tumor and liver: a noninvasive positron emission tomography study of patients with gastrointestinal cancer. Cancer Res. 2001;61:4937–41.

    CAS  PubMed  Google Scholar 

  11. Burke D, Carnochan P, Glover C, Allen-Mersh TG. Correlation between tumour blood flow and fluorouracil distribution in a hypovascular liver metastasis model. Department of Academic Surgery, Leeds General Infirmary, UK. Clin Exp Metastasis. 2000;18:617–22.

    CAS  PubMed  Google Scholar 

  12. Koukourakis MI, Giatromanolaki A, Sivridis E, Fezoulidis I. Cancer vascularization: implications in radiotherapy? Int J Radiat Oncol Biol Phys. 2000;48:545–53.

    CAS  PubMed  Google Scholar 

  13. Giatromanolaki A, Koukourakis MI, Sivridis E, O'Byrne K, Gatter KC, Harris AL. 'Invading edge vs inner' (edvin) patterns of vascularization: an interplay between angiogenic and vascular survival factors defines the clinical behavior of non-small cell lung cancer. J Pathol. 2000;192:140–9.

    CAS  PubMed  Google Scholar 

  14. Tharmalingham H, Hoskin P. Clinical trials targeting hypoxia. Br J Radiol. 2018;2018:20170966.

    Google Scholar 

  15. Bishop T, Ratcliffe PJ. Signaling hypoxia by hypoxia-inducible factor protein hydroxylases: a historical overview and future perspectives. Hypoxia (Auckl). 2014;2:197–21313.

    Google Scholar 

  16. Samanta D, Semenza GL. Metabolic adaptation of cancer and immune cells mediated by hypoxia-inducible factors. Biochim Biophys Acta Rev Cancer. 2018;1870:15–22.

    CAS  PubMed  Google Scholar 

  17. Agani F, Jiang BH. Oxygen-independent regulation of HIF-1: novel involvement of PI3K/AKT/mTOR pathway in cancer. Curr Cancer Drug Targets. 2013;13:245–51.

    CAS  PubMed  Google Scholar 

  18. Crabtree HG, Cramer W. The action of radium on cancer cells. Proc R Soc Lond (Biol). 1933;113:238–50.

    CAS  Google Scholar 

  19. Rey S, Schito L, Koritzinsky M, Wouters BG. Molecular targeting of hypoxia in radiotherapy. Adv Drug Deliv Rev. 2017;109:45–62.

    CAS  PubMed  Google Scholar 

  20. Aebersold DM, Burri P, Beer KT, Laissue J, Djonov V, Greiner RH, Semenza GL. Expression of hypoxia-inducible factor-1alpha: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res. 2001;61:2911–6.

    CAS  PubMed  Google Scholar 

  21. Koukourakis MI, Bentzen SM, Giatromanolaki A, Wilson GD, Daley FM, Saunders MI, Dische S, Sivridis E, Harris AL. Endogenous markers of two separate hypoxia response pathways (hypoxia inducible factor 2 alpha and carbonic anhydrase 9) are associated with radiotherapy failure in head and neck cancer patients recruited in the CHART randomized trial. J Clin Oncol. 2006;24:727–35.

    CAS  PubMed  Google Scholar 

  22. Koukourakis MI, Giatromanolaki A. Warburg effect, lactate dehydrogenase, and radio/chemo-therapy efficacy. Int J Radiat Biol. 2019;95:408–26.

    CAS  PubMed  Google Scholar 

  23. Mahon BP, Pinard MA, McKenna R. Targeting carbonic anhydrase IX activity and expression. Molecules. 2015;20:2323–48.

    PubMed  PubMed Central  Google Scholar 

  24. Barker HE, Paget JT, Khan AA, Harrington KJ. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer. 2015;15:409–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Taylor S, Spugnini EP, Assaraf YG, Azzarito T, Rauch C, Fais S. Microenvironment acidity as a major determinant of tumor chemoresistance: Proton pump inhibitors (PPIs) as a novel therapeutic approach. Drug Resist Updat. 2015;23:69–78.

    PubMed  Google Scholar 

  26. Ou D, Garberis I, Adam J, Blanchard P, Nguyen F, Levy A, Casiraghi O, Gorphe P, Breuskin I, Janot F, Temam S, Scoazec JY, Deutsch E, Tao Y. Prognostic value of tissue necrosis, hypoxia-related markers and correlation with HPV status in head and neck cancer patients treated with bio- or chemo-radiotherapy. Radiother Oncol. 2018;126(1):116–24.

    PubMed  Google Scholar 

  27. Kim JH, Kim JY, Yoon MS, Kim YS, Lee JH, Kim HJ, Kim H, Kim YJ, Yoo CW, Nam BH, Kim TH, Kim SK, Kim SH, Kang S, Seo SS, Lim MC, Park SY. Prophylactic irradiation of para-aortic lymph nodes for patients with locally advanced cervical cancers with and without high CA9 expression (KROG 07–01): A randomized, open-label, multicenter, phase 2 trial. Radiother Oncol. 2016;120:383–9.

    CAS  PubMed  Google Scholar 

  28. Kim EJ, Lee H, Lee YJ, Sonn JK, Lim YB. Ionizing Radiation regulates vascular endothelial growth factor-A transcription in cultured human vascular endothelial cells via the PERK/eIF2α/ATF4 pathway. Int J Radiat Oncol Biol Phys. 2020. https://doi.org/10.1016/j.ijrobp.2020.03.003.

    Article  PubMed  Google Scholar 

  29. Koukourakis MI, Koukourakis IM, Arelaki S, Kouroupi M, Domoxoudis S, Giatromanolaki A. Angiogenic regeneration defines loco-regional recurrence following pre-operative radio-chemotherapy for rectal cancer: a pilot study. Mol Biol Rep. 2019;46(2):2147–52.

    CAS  PubMed  Google Scholar 

  30. Tsolou A, Lamprou I, Fortosi AO, Liousia M, Giatromanolaki A, Koukourakis MI. 'Stemness' and 'senescence' related escape pathways are dose dependent in lung cancer cells surviving post irradiation. Life Sci. 2019;232:116562.

    CAS  PubMed  Google Scholar 

  31. Mohan R, Held KD, Story MD, Grosshans D, Capala J. Proceedings of the national cancer institute workshop on charged particle radiobiology. Int J Radiat Oncol Biol Phys. 2018;100:816–31.

    PubMed  Google Scholar 

  32. Bhattarai D, Xu X, Lee K. Hypoxia-inducible factor-1 (HIF-1) inhibitors from the last decade (2007 to 2016): a "structure-activity relationship" perspective. Med Res Rev. 2018;38:1404–42.

    PubMed  Google Scholar 

  33. Bandurska-Luque A, Löck S, Haase R, Richter C, Zöphel K, Abolmaali N, Seidlitz A, Appold S, Krause M, Steinbach J, Kotzerke J, Zips D, Baumann M, Troost EGC. FMISO-PET-based lymph node hypoxia adds to the prognostic value of tumor only hypoxia in HNSCC patients. Radiother Oncol. 2019;130:97–103.

    PubMed  Google Scholar 

  34. Golden EB, Apetoh L. Radiotherapy and immunogenic cell death. Semin Radiat Oncol. 2015;25(1):11–7.

    PubMed  Google Scholar 

  35. Stone HB, Peters LJ, Milas L. Effect of host immune capability on radiocurability and subsequent transplantability of a murine fibrosarcoma. J Natl Cancer Inst. 1979;63:1229–355.

    CAS  PubMed  Google Scholar 

  36. Mensah SA, Harding IC, Zhang M, Jaeggli MP, Torchilin VP, Niedre MJ, Ebong EE. Metastatic cancer cell attachment to endothelium is promoted by endothelial glycocalyx sialic acid degradation. AIChE J. 2019;65:8.

    Google Scholar 

  37. Rodrigues E, Macauley MS. Hypersialylation in cancer: modulation of inflammation and therapeutic opportunities. Cancers (Basel). 2018;10:E207.

    PubMed  Google Scholar 

  38. Multhoff G, Vaupel P. Hypoxia compromises anti-cancer immune responses. Adv Exp Med Biol. 2020;1232:131–43.

    CAS  PubMed  Google Scholar 

  39. Calcinotto A, Filipazzi P, Grioni M, Iero M, De Milito A, Ricupito A, Cova A, Canese R, Jachetti E, Rossetti M, Huber V, Parmiani G, Generoso L, Santinami M, Borghi M, Fais S, Bellone M, Rivoltini L. Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res. 2012;72:2746–56.

    CAS  PubMed  Google Scholar 

  40. Giatromanolaki A, Koukourakis IM, Balaska K, Mitrakas AG, Harris AL, Koukourakis MI. Programmed death-1 receptor (PD-1) and PD-ligand-1 (PD-L1) expression in non-small cell lung cancer and the immune-suppressive effect of anaerobic glycolysis. Med Oncol. 2019;36:76.

    PubMed  Google Scholar 

  41. Giatromanolaki A, Harris AL, Banham AH, Contrafouris CA, Koukourakis MI. Carbonic anhydrase 9 (CA9) expression in non-small-cell lung cancer: correlation with regulatory FOXP3+T-cell tumour stroma infiltration. Br J Cancer. 2020;122(8):1205–10. https://doi.org/10.1038/s41416-020-0756-3.

    Article  CAS  PubMed  Google Scholar 

  42. Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD39 and CD73: novel checkpoint inhibitor targets. Immunol Rev. 2017;276:121–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Arab S, Hadjati J. Adenosine blockage in tumor microenvironment and improvement of cancer immunotherapy. Immune Netw. 2019;19:e23.

    PubMed  PubMed Central  Google Scholar 

  44. Mitra D, Horick NK, Brackett DG, Mouw KW, Hornick JL, Ferrone S, Hong TS, Mamon H, Clark JW, Parikh AR, Allen JN, Ryan DP, Ting DT, Deshpande V, Wo JY. High IDO1 expression is associated with poor outcome in patients with anal cancer treated with definitive chemoradiotherapy. Oncologist. 2019;24:e275–e283283.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Platten M, Nollen EAA, Röhrig UF, Fallarino F, Opitz CA. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat Rev Drug Discov. 2019;18:379–401.

    CAS  PubMed  Google Scholar 

  46. Timosenko E, Hadjinicolaou AV, Cerundolo V. Modulation of cancer-specific immune responses by amino acid degrading enzymes. Immunotherapy. 2017;9:83–97.

    CAS  PubMed  Google Scholar 

  47. Hui R, Özgüroğlu M, Villegas A, Daniel D, Vicente D, Murakami S, Yokoi T, Chiappori A, Lee KH, de Wit M, Cho BC, Gray JE, Rydén A, Viviers L, Poole L, Zhang Y, Dennis PA, Antonia SJ. Patient-reported outcomes with durvalumab after chemoradiotherapy in stage III, unresectable non-small-cell lung cancer (PACIFIC): a randomised, controlled, phase 3 study. Lancet Oncol. 2019;20:1670–80.

    CAS  PubMed  Google Scholar 

  48. Koukourakis GV, Baksevanis CN, Zambatis H, Gritzapis A, Maltezos E, Simopoulos C, Koukourakis MI. Amifostine enhances recovery and expansion of peripheral FAS/CD95+ T- and NK-cell subpopulations during radiotherapy of patients with head-neck cancer. Int J Radiat Biol. 2009;85:96–104.

    CAS  PubMed  Google Scholar 

  49. Koukourakis MI, Ktenidou-Kartali S, Bourikas G, Kartalis G, Tsatalas C. Amifostine protects lymphocytes during radiotherapy and stimulates expansion of the CD95/Fas and CD31 expressing T-cells, in breast cancer patients. Cancer Immunol Immunother. 2003;52:127–31.

    CAS  PubMed  Google Scholar 

  50. Benna M, Guy JB, Bosacki C, Jmour O, Ben Mrad M, Ogorodniitchouk O, Soltani S, Lan M, Daguenet E, Mery B, Sotton S, Magné N, Vallard A. Chemoradiation and granulocyte-colony or granulocyte macrophage-colony stimulating factors (G-CSF or GM-CSF): time to think out of the box? Br J Radiol. 2020;93:20190147.

    PubMed  Google Scholar 

  51. Leary R, Gardner RB, Mockbee C, Roychowdhury DF. Boosting abscopal response to radiotherapy with sargramostim: a review of data and ongoing studies. Cureus. 2019;11:e4276.

    PubMed  PubMed Central  Google Scholar 

  52. Deng L, Liang H, Xu M, Yang X, Burnette B, Arina A, Li XD, Mauceri H, Beckett M, Darga T, Huang X, Gajewski TF, Chen ZJ, Fu YX, Weichselbaum RR. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity. 2014;41:843–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond JM, Schneider RJ, Inghirami G, Coleman CN, Formenti SC, Demaria S. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun. 2017;8:15618.

    PubMed  PubMed Central  Google Scholar 

  54. Wang X, Schoenhals JE, Li A, Valdecanas DR, Ye H, Zang F, Tang C, Tang M, Liu CG, Liu X, Krishnan S, Allison JP, Sharma P, Hwu P, Komaki R, Overwijk WW, Gomez DR, Chang JY, Hahn SM, Cortez MA, Welsh JW. Suppression of type I IFN signaling in tumors mediates resistance to anti-PD-1 treatment that can be overcome by radiotherapy. Cancer Res. 2017;77:839–50.

    CAS  PubMed  Google Scholar 

  55. Wunderlich R, Ernst A, Rödel F, Fietkau R, Ott O, Lauber K, Frey B, Gaipl US. Low and moderate doses of ionizing radiation up to 2 Gy modulate transmigration and chemotaxis of activated macrophages, provoke an anti-inflammatory cytokine milieu, but do not impact upon viability and phagocytic function. Clin Exp Immunol. 2015;179:50–61.

    CAS  PubMed  Google Scholar 

  56. Janssens GO, Rademakers SE, Terhaard CH, Doornaert PA, Bijl HP, van den Ende P, Chin A, Takes RP, de Bree R, Hoogsteen IJ, Bussink J, Span PN, Kaanders JH. Improved recurrence-free survival with ARCON for anemic patients with laryngeal cancer. Clin Cancer Res. 2014;20:1345–54.

    CAS  PubMed  Google Scholar 

  57. Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol. 2012;12:269–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang YX, Zhao YY, Shen J, Sun X, Liu Y, Liu H, Wang Y, Wang J. Nanoenabled modulation of acidic tumor microenvironment reverses anergy of infiltrating T cells and potentiates anti-PD-1 therapy. Nano Lett. 2019;19:2774–833.

    CAS  PubMed  Google Scholar 

  59. Shaverdian N, Lisberg AE, Bornazyan K, Veruttipong D, Goldman JW, Formenti SC, Garon EB, Lee P. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol. 2017;18:895–903.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Yoneda K, Kuwata T, Kanayama M, Mori M, Kawanami T, Yatera K, Ohguri T, Hisaoka M, Nakayama T, Tanaka F. Alteration in tumoural PD-L1 expression and stromal CD8-positive tumour-infiltrating lymphocytes after concurrent chemo-radiotherapy for non-small cell lung cancer. Br J Cancer. 2019;121:490–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Vanpouille-Box C, Formenti SC, Demaria S. Toward precision radiotherapy for use with immune checkpoint blockers. Clin Cancer Res. 2018;24:259–65.

    CAS  PubMed  Google Scholar 

  62. Ni J, Bucci J, Malouf D, Knox M, Graham P, Li Y. Exosomes in cancer radioresistance. Front Oncol. 2019;9:869.

    PubMed  PubMed Central  Google Scholar 

  63. Theodoraki MN, Yerneni SS, Hoffmann TK, Gooding WE, Whiteside TL. Clinical significance of PD-L1(+) Exosomes In Plasma Of Head And Neck Cancer Patients. Clin Cancer Res. 2018;24:896–905.

    CAS  PubMed  Google Scholar 

  64. Li D, Cheng S, Zou S, Zhu D, Zhu T, Wang P, Zhu X. Immuno-PET imaging of (89)Zr labeled anti-PD-L1 domain antibody. Mol Pharm. 2018;15:1674–81.

    CAS  PubMed  Google Scholar 

  65. Tavaré R, Escuin-Ordinas H, Mok S, McCracken MN, Zettlitz KA, Salazar FB, Witte ON, Ribas A, Wu AM. An effective immuno-PET imaging method to monitor CD8-Dependent Responses To Immunotherapy. Cancer Res. 2016;76:73–82.

    PubMed  Google Scholar 

  66. Hu M, Xie P, Lee NY, Li M, Ho F, Lian M, Zhao S, Yang G, Fu Z, Zheng J, Ma L, Yu J. Hypoxia with 18F-fluoroerythronitroimidazole integrated positron emission tomography and computed tomography (18F-FETNIM PET/CT) in locoregionally advanced head and neck cancer: Hypoxia changes during chemoradiotherapy and impact on clinical outcome. Med (Baltim). 2019;98(40):e17067.

    CAS  Google Scholar 

  67. Waller J, Onderdonk B, Flood A, Swartz H, Shah J, Shah A, Aydogan B, Halpern H, Hasan Y. The clinical utility of imaging methods used to measure hypoxia in cervical cancer. Br J Radiol. 2020;2020:20190640.

    Google Scholar 

Download references

Funding

The study has been financially supported by the Democritus University of Thrace Special Account, project no 81006.

Author information

Authors and Affiliations

Authors

Contributions

MIK: conception and writing of the paper. AG: conception and writing of the paper.

Corresponding author

Correspondence to M. I. Koukourakis.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Ethical approval

The patient CT-scan shown in Fig. 2 has been treated according to a protocol approved by the local Ethics and Scientific Committee (DS34/28-9-2006).

Informed consent

Written informed consent was obtained from the patient. Consent for publication: There are no individual person’s data included in the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koukourakis, M.I., Giatromanolaki, A. Tumor microenvironment, immune response and post-radiotherapy tumor clearance. Clin Transl Oncol 22, 2196–2205 (2020). https://doi.org/10.1007/s12094-020-02378-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-020-02378-8

Keywords

Navigation