Skip to main content
Log in

Prognostic and predictive values of CXCL10 in colorectal cancer

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

The role of CXCL10 in progression and prognosis of colorectal cancer (CRC) has been studied for years, yet results remain controversial.

Aim

This study aims to explore the relationship between CXCL10 and CRC progression and prognosis.

Methods

We evaluated plasma CXCL10 in CRC patients using ELISA. We also performed a meta-analysis of the associations between CXCL10 and overall survival (OS), disease-free survival (DFS), disease-specific survival (DSS), relapse-free survival (RFS), and clinicopathological features. Finally, correlations between CXCL10 and methylation or immune infiltration were performed using TCGA data.

Results

ELISA analysis showed that CXCL10 was associated with age, red blood cells, blood platelets, and blood urea nitrogen. A separate analysis of 3,763 patients from 24 studies revealed that there were significant associations between low CXCL10 expression and OS (HR 1.25, 95% CI 1.01–1.53), DFS (HR 1.65, 95% CI 1.17–2.34), and RFS (HR 1.43, 95% CI 1.20–1.71) in CRC. Additionally, downregulated CXCL10 expression was significantly correlated with age [odds ratio (OR) 1.31, 95% CI 1.13–1.52], metastasis (OR 1.34, 95% CI 1.11–1.63), recurrence (OR 1.46, 95% CI 1.16–1.83), tumor location (OR 1.88, 95% CI 1.58–2.24), differentiation (OR 0.57, 95% CI 0.35–0.93), microsatellite instability (OR 0.23, 95% CI 0.15–0.35), BRAF mutation (OR 1.62, 95% CI 1.25–2.08), p53 mutation (OR 0.28, 95% CI 0.16–0.47), and CIMP (OR 0.27, 95% CI 0.17–0.43). Furthermore, significant associations were observed between CXCL10 and methylation and immune infiltration.

Conclusions

The study suggests that CXCL10 might be a potential target for the treatment of CRC.

Trial registration

NCT03189992. Registered 4 June 2017, https://www.clinicaltrials.gov/ct2/show/study/NCT03189992?term=NCT03189992&rank=1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data accessibility

All data generated or analyzed during the study are included in this published article.

References

  1. Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RGS, Barzi A, Jemal A. Colorectal cancer statistics. CA. 2017;67(3):177–93.

  2. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J. Cancer statistics in China. CA. 2015;66(2):115–32.

  3. van der Stok EP, Spaander MCW, Grunhagen DJ, Verhoef C, Kuipers EJ. Surveillance after curative treatment for colorectal cancer. Nature reviews. Clin Oncol. 2017;14(5):297–315.

    Google Scholar 

  4. Zhang X, Sun XF, Shen B, Zhang H. Potential applications of DNA, RNA and protein biomarkers in diagnosis, therapy and prognosis for colorectal cancer: a study from databases to AI-assisted verification. Cancers. 2019;11(2):172.

    Article  CAS  PubMed Central  Google Scholar 

  5. Lee EY, Lee ZH, Song YW. CXCL10 and autoimmune diseases. Autoimmun Rev. 2009;8(5):379–83.

    Article  CAS  PubMed  Google Scholar 

  6. Liu M, Guo S, Stiles JK. The emerging role of CXCL10 in cancer (Review). Oncol Lett. 2011;2(4):583–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jiang Z, Xu Y, Cai S. CXCL10 expression and prognostic significance in stage II and III colorectal cancer. Mol Biol Rep. 2010;37(6):3029–36.

    Article  CAS  PubMed  Google Scholar 

  8. Bai M, Chen X, Ba YI. CXCL10/CXCR3 overexpression as a biomarker of poor prognosis in patients with stage II colorectal cancer. Mol Clin Oncol. 2016;4(1):23–30.

    Article  CAS  PubMed  Google Scholar 

  9. Galamb O, Sipos F, Solymosi N, Spisak S, Krenacs T, Toth K, Tulassay Z, Molnar B. Diagnostic mRNA expression patterns of inflamed, benign, and malignant colorectal biopsy specimen and their correlation with peripheral blood results, Cancer epidemiology, biomarkers and prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive. Oncology. 2008;17(10):2835–45.

    CAS  Google Scholar 

  10. Hamilton TD, Leugner D, Kopciuk K, Dixon E, Sutherland FR, Bathe OF. Identification of prognostic inflammatory factors in colorectal liver metastases. BMC Cancer. 2014;14:542.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Li C, Wang Z, Liu F, Zhu J, Yang L, Cai G, Zhang Z, Huang W, Cai S, Xu Y. CXCL10 mRNA expression predicts response to neoadjuvant chemoradiotherapy in rectal cancer patients. Tumour Biol. 2014;35(10):9683–91.

    Article  CAS  PubMed  Google Scholar 

  12. Mlecnik B, Tosolini M, Charoentong P, Kirilovsky A, Bindea G, Berger A, Camus M, Gillard M, Bruneval P, Fridman WH, Pages F, Trajanoski Z, Galon J. Biomolecular network reconstruction identifies T-cell homing factors associated with survival in colorectal cancer. Gastroenterology. 2010;138(4):1429–40.

    Article  CAS  PubMed  Google Scholar 

  13. S. Alonso, X. Mayol, L. Nonell, S. Salvans, M. Pascual, M. Pera, G. Colorectal Cancer Research, Peripheral blood leucocytes show differential expression of tumour progression-related genes in colorectal cancer patients who have a postoperative intra-abdominal infection: a prospective matched cohort study. Colorectal Dis. 2017;19(5): O115–25.

  14. Kibe S, Yutani S, Motoyama S, Nomura T, Tanaka N, Kawahara A, Yamaguchi T, Matsueda S, Komatsu N, Miura M, Hinai Y, Hattori S, Yamada A, Kage M, Itoh K, Akagi Y, Sasada T. Phase II study of personalized peptide vaccination for previously treated advanced colorectal cancer. Cancer Immunol Res. 2014;2(12):1154–62.

    Article  CAS  PubMed  Google Scholar 

  15. Toiyama Y, Fujikawa H, Kawamura M, Matsushita K, Saigusa S, Tanaka K, Inoue Y, Uchida K, Mohri Y, Kusunoki M. Evaluation of CXCL10 as a novel serum marker for predicting liver metastasis and prognosis in colorectal cancer. Int J Oncol. 2012;40(2):560–6.

    CAS  PubMed  Google Scholar 

  16. Pang B, Sui S, Wang Q, Wu J, Yin Y, Xu S. Upregulation of DLEU1 expression by epigenetic modification promotes tumorigenesis in human cancer. J Cell Physiol. 2019;234(10):17420–32.

    Article  CAS  PubMed  Google Scholar 

  17. Qureshi IA, Mehler MF. Emerging role of epigenetics in stroke: part 1: DNA methylation and chromatin modifications. Arch Neurol. 2010;67(11):1316–22.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rezapour S, Hosseinzadeh E, Marofi F, Hassanzadeh A. Epigenetic-based therapy for colorectal cancer: prospect and involved mechanisms. J Cell Physiol. 2019;234(11):19366–83.

    Article  CAS  PubMed  Google Scholar 

  19. Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012;12(4):298–306.

    Article  CAS  PubMed  Google Scholar 

  20. P. Ge, W. Wang, L. Li, G. Zhang, Z. Gao, Z. Tang, X. Dang, Y. Wu, Profiles of immune cell infiltration and immune-related genes in the tumor microenvironment of colorectal cancer. Biomed Pharm. 2019;118:109228.

  21. Zheng H, Zhao W, Yan C, Watson CC, Massengill M, Xie M, Massengill C, Noyes DR, Martinez GV, Afzal R, Chen Z, Ren X, Antonia SJ, Haura EB, Ruffell B, Beg AA. HDAC inhibitors enhance T-Cell chemokine expression and augment response to PD-1 immunotherapy in lung adenocarcinoma. Clin Cancer Res. 2016;22(16):4119–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li B, Severson E, Pignon JC, Zhao H, Li T, Novak J, Jiang P, Shen H, Aster JC, Rodig S, Signoretti S, Liu JS, Liu XS. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol. 2016;17(1):174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials. 2007;8:16.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Stang A. Critical evaluation of the Newcastle–Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.

    Article  PubMed  Google Scholar 

  25. Wong WC, Cheung CS, Hart GJ. Development of a quality assessment tool for systematic reviews of observational studies (QATSO) of HIV prevalence in men having sex with men and associated risk behaviours. Emerg Themes Epidemiol. 2008;5:23.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.

    Article  PubMed  Google Scholar 

  27. M. Egger, G. Davey Smith, M. Schneider, C. Minder. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.

  28. J. Gao, B.A. Aksoy, U. Dogrusoz, G. Dresdner, B. Gross, S.O. Sumer, Y. Sun, A. Jacobsen, R. Sinha, E. Larsson, E. Cerami, C. Sander, N. Schultz. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1.

  29. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.

    Article  PubMed  Google Scholar 

  30. Koch A, De Meyer T, Jeschke J, Van Criekinge W. MEXPRESS: visualizing expression, DNA Methylation clinical TCGA data. BMC Genom. 2015;16:636.

    Article  CAS  Google Scholar 

  31. Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, Nair VS, Xu Y, Khuong A, Hoang CD, Diehn M, West RB, Plevritis SK, Alizadeh AA. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med. 2015;21(8):938–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, Reich M, Hieronymus H, Wei G, Armstrong SA, Haggarty SJ, Clemons PA, Wei R, Carr SA, Lander ES, Golub TR. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313(5795):1929–35.

    Article  CAS  PubMed  Google Scholar 

  33. Loboda A, Nebozhyn MV, Watters JW, Buser CA, Shaw PM, Huang PS, Van't Veer L, Tollenaar RA, Jackson DB, Agrawal D, Dai H, Yeatman TJ. EMT is the dominant program in human colon cancer. BMC Med Genom. 2011;4(1):9.

    Article  Google Scholar 

  34. Smith JJ, Deane NG, Wu F, Merchant NB, Zhang B, Jiang A, Lu P, Johnson JC, Schmidt C, Bailey CE, Eschrich S, Kis C, Levy S, Washington MK, Heslin MJ, Coffey RJ, Yeatman TJ, Shyr Y, Beauchamp RD. Experimentally derived metastasis gene expression profile predicts recurrence and death in patients with colon cancer. Gastroenterology. 2010;138(3):958–68.

    Article  CAS  PubMed  Google Scholar 

  35. Staub E, Groene J, Heinze M, Mennerich D, Roepcke S, Klaman I, Hinzmann B, Castanos-Velez E, Pilarsky C, Mann B, Brummendorf T, Weber B, Buhr HJ, Rosenthal A. An expression module of WIPF1-coexpressed genes identifies patients with favorable prognosis in three tumor types. J Mol Med. 2009;87(6):633–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sheffer M, Bacolod MD, Zuk O, Giardina SF, Pincas H, Barany F, Paty PB, Gerald WL, Notterman DA, Domany E. Association of survival and disease progression with chromosomal instability: a genomic exploration of colorectal cancer. Proc Natl Acad Sci USA. 2009;106(17):7131–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sveen A, Agesen TH, Nesbakken A, Rognum TO, Lothe RA, Skotheim RI. Transcriptome instability in colorectal cancer identified by exon microarray analyses: Associations with splicing factor expression levels and patient survival. Genome Med. 2011;3(5):32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Reid JF, Gariboldi M, Sokolova V, Capobianco P, Lampis A, Perrone F, Signoroni S, Costa A, Leo E, Pilotti S, Pierotti MA. Integrative approach for prioritizing cancer genes in sporadic colon cancer. Genes Chromosom Cancer. 2009;48(11):953–62.

    Article  CAS  PubMed  Google Scholar 

  39. D.T. Chen, J.M. Hernandez, D. Shibata, S.M. McCarthy, L.A. Humphries, W. Clark, A. Elahi, M. Gruidl, D. Coppola, T. Yeatman. Complementary strand microRNAs mediate acquisition of metastatic potential in colonic adenocarcinoma. J Gastrointest Surg. 2012;16(5):905–12 (discussion 912–3).

  40. Tripathi MK, Deane NG, Zhu J, An H, Mima S, Wang X, Padmanabhan S, Shi Z, Prodduturi N, Ciombor KK, Chen X, Washington MK, Zhang B, Beauchamp RD. Nuclear factor of activated T-cell activity is associated with metastatic capacity in colon cancer. Can Res. 2014;74(23):6947–57.

    Article  CAS  Google Scholar 

  41. Marisa L, de Reynies A, Duval A, Selves J, Gaub MP, Vescovo L, Etienne-Grimaldi MC, Schiappa R, Guenot D, Ayadi M, Kirzin S, Chazal M, Flejou JF, Benchimol D, Berger A, Lagarde A, Pencreach E, Piard F, Elias D, Parc Y, Olschwang S, Milano G, Laurent-Puig P, Boige V. Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med. 2013;10(5):e1001453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jorissen RN, Gibbs P, Christie M, Prakash S, Lipton L, Desai J, Kerr D, Aaltonen LA, Arango D, Kruhoffer M, Orntoft TF, Andersen CL, Gruidl M, Kamath VP, Eschrich S, Yeatman TJ, Sieber OM. Metastasis-associated gene expression changes predict poor outcomes in patients with dukes stage B and C colorectal cancer. Clin Cancer Res. 2009;15(24):7642–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kirzin S, Marisa L, Guimbaud R, De Reynies A, Legrain M, Laurent-Puig P, Cordelier P, Pradere B, Bonnet D, Meggetto F, Portier G, Brousset P, Selves J. Sporadic early-onset colorectal cancer is a specific sub-type of cancer: a morphological, molecular and genetics study. PLoS One. 2014;9(8):e103159.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. de Sousa EMF, Colak S, Buikhuisen J, Koster J, Cameron K, de Jong JH, Tuynman JB, Prasetyanti PR, Fessler E, van den Bergh SP, Rodermond H, Dekker E, van der Loos CM, Pals ST, van de Vijver MJ, Versteeg R, Richel DJ, Vermeulen L, Medema JP. Methylation of cancer-stem-cell-associated Wnt target genes predicts poor prognosis in colorectal cancer patients. Cell Stem Cell. 2011;9(5):476–85.

    Article  CAS  Google Scholar 

  45. An N, Shi X, Zhang Y, Lv N, Feng L, Di X, Han N, Wang G, Cheng S, Zhang K. Discovery of a novel immune gene signature with profound prognostic value in colorectal cancer: a model of cooperativity disorientation created in the process from development to cancer. PLoS One. 2015;10(9):e0137171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Kennedy RD, Bylesjo M, Kerr P, Davison T, Black JM, Kay EW, Holt RJ, Proutski V, Ahdesmaki M, Farztdinov V, Goffard N, Hey P, McDyer F, Mulligan K, Mussen J, O'Brien E, Oliver G, Walker SM, Mulligan JM, Wilson C, Winter A, O'Donoghue D, Mulcahy H, O'Sullivan J, Sheahan K, Hyland J, Dhir R, Bathe OF, Winqvist O, Manne U, Shanmugam C, Ramaswamy S, Leon EJ, Smith WI Jr, McDermott U, Wilson RH, Longley D, Marshall J, Cummins R, Sargent DJ, Johnston PG, Harkin DP. Development and independent validation of a prognostic assay for stage II colon cancer using formalin-fixed paraffin-embedded tissue. J Clin Oncol. 2011;29(35):4620–6.

    Article  PubMed  Google Scholar 

  47. Zeng YJ, Lai W, Wu H, Liu L, Xu HY, Wang J, Chu ZH. Neuroendocrine-like cells -derived CXCL10 and CXCL11 induce the infiltration of tumor-associated macrophage leading to the poor prognosis of colorectal cancer. Oncotarget. 2016;7(19):27394–407.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yates-Binder CC, Rodgers M, Jaynes J, Wells A, Bodnar RJ, Turner T. An IP-10 (CXCL10)-derived peptide inhibits angiogenesis. PLoS One. 2012;7(7):e40812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Petrai I, Rombouts K, Lasagni L, Annunziato F, Cosmi L, Romanelli RG, Sagrinati C, Mazzinghi B, Pinzani M, Romagnani S, Romagnani P, Marra F. Activation of p38(MAPK) mediates the angiostatic effect of the chemokine receptor CXCR3-B. Int J Biochem Cell Biol. 2008;40(9):1764–74.

    Article  CAS  PubMed  Google Scholar 

  50. Bronger H, Singer J, Windmuller C, Reuning U, Zech D, Delbridge C, Dorn J, Kiechle M, Schmalfeldt B, Schmitt M, Avril S. CXCL9 and CXCL10 predict survival and are regulated by cyclooxygenase inhibition in advanced serous ovarian cancer. Br J Cancer. 2016;115(5):553–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fujita M, Zhu X, Ueda R, Sasaki K, Kohanbash G, Kastenhuber ER, McDonald HA, Gibson GA, Watkins SC, Muthuswamy R, Kalinski P, Okada H. Effective immunotherapy against murine gliomas using type 1 polarizing dendritic cells—significant roles of CXCL10. Can Res. 2009;69(4):1587–95.

    Article  CAS  Google Scholar 

  52. Gao XH, Yu GY, Gong HF, Liu LJ, Xu Y, Hao LQ, Liu P, Liu ZH, Bai CG, Zhang W. Differences of protein expression profiles, KRAS and BRAF mutation, and prognosis in right-sided colon, left-sided colon and rectal cancer. Sci Rep. 2017;7(1):7882.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Petitprez F, Vano YA, Becht E, Giraldo NA, de Reynies A, Sautes-Fridman C, Fridman WH. Transcriptomic analysis of the tumor microenvironment to guide prognosis and immunotherapies. Cancer Immunol Immunother. 2017;67(6):981–8.

    Article  PubMed  Google Scholar 

  54. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239–52.

    Article  CAS  PubMed  Google Scholar 

  55. Aran D, Sirota M, Butte AJ. Systematic pan-cancer analysis of tumour purity. Nat Commun. 2015;6:8971.

    Article  CAS  PubMed  Google Scholar 

  56. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science. 2011;331(6024):1565–70.

    Article  CAS  PubMed  Google Scholar 

  57. Peng D, Kryczek I, Nagarsheth N, Zhao L, Wei S, Wang W, Sun Y, Zhao E, Vatan L, Szeliga W, Kotarski J, Tarkowski R, Dou Y, Cho K, Hensley-Alford S, Munkarah A, Liu R, Zou W. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature. 2015;527(7577):249–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. K Au K, Peterson N, Truesdell P, Reid-Schachter G, Khalaj K, Ren R, Francis JA, Graham CH, Craig AW, Koti M. CXCL10 alters the tumour immune microenvironment and disease progression in a syngeneic murine model of high-grade serous ovarian cancer. Gynecol Oncol. 2017;145(3):436–45.

    Article  PubMed  CAS  Google Scholar 

  59. van der Merwe M, Bjornsti MA. Mutation of Gly721 alters DNA topoisomerase I active site architecture and sensitivity to camptothecin. J Biol Chem. 2008;283(6):3305–15.

    Article  PubMed  CAS  Google Scholar 

  60. Tang X, Xu Y, Lu L, Jiao Y, Liu J, Wang L, Zhao H. Identification of key candidate genes and small molecule drugs in cervical cancer by bioinformatics strategy. Cancer Manag Res. 2018;10:3533–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen MH, Lin KJ, Yang WL, Kao YW, Chen TW, Chao SC, Chang PM, Liu CY, Tzeng CH, Chao Y, Chen MH, Yeh CN, Huang CY. Gene expression-based chemical genomics identifies heat-shock protein 90 inhibitors as potential therapeutic drugs in cholangiocarcinoma. Cancer. 2013;119(2):293–303.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shanghai Natural Science Foundation (17ZR1427600), National Science and Technology Major Projects for “Major New Drugs Innovation and Development” (2018ZX09201008-002–091 and 2018ZX09201008-002–092), Shanghai Science and Technology Support Project in Biomedicine Field (18401932900), Budgetary Projects of Shanghai University of Traditional Chinese Medicine (No. 2019LK046), Special Clinical Research Project of Health Profession of Shanghai Municipal Commission of Health (20194Y0081), National Natural Science Foundation of China (81904130), Shanghai Sailing Program (19YF1449900) and China Postdoctoral Science Foundation (2019M650088).

Author information

Authors and Affiliations

Authors

Contributions

Conceiving, S-BS; data curation, JC and X-LC; funding acquisition, J-C, Z-QL, B-YC, X-QH and Y-MC; investigation, Q-LC and B-YC; methodology, Q-LC, X-QH, Z-QL and Y-MC; resources, X-LC; validation, W-HW; visualization, W-HW; writing—original draft, JC.

Corresponding author

Correspondence to S.-B. Su.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Approval for the use of the samples in research was obtained from the ethical local committee from the hospital and with the 1964 Helsinki declaration. Trial registration: NCT03189992. Registered 4 June 2017, https://www.clinicaltrials.gov/ct2/show/study/NCT03189992?term=NCT03189992&rank=1.

Informed consent

All patients gave written inform consent before enrollment.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Chen, QL., Wang, WH. et al. Prognostic and predictive values of CXCL10 in colorectal cancer. Clin Transl Oncol 22, 1548–1564 (2020). https://doi.org/10.1007/s12094-020-02299-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-020-02299-6

Keywords

Navigation