Skip to main content

Advertisement

Log in

Lipidic Nanosystem as State-of-the-Art Nanovehicle for Biomedical Applications

  • REVIEW ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Lipids have tremendously transformed the biomedical field, especially in the last few decades. Nanosystems, especially Lipid nanocapsules (LNCs), have emerged as the most demanding nanovehicle systems for delivering drugs, genes, and other diagnostic agents. Unique attributes and characteristic features such as higher encapsulation efficiency, stealth effect, ability to solubilize a wide range of drugs, capability to inhibit P-gp efflux pumps, and higher stability play a vital role in engaging this nanosystem. LNCs are a lipid-based nano-drug delivery method that combines the most significant traits of liposomes with polymeric nanoparticles. Structurally, LNCs have an oily core consisting of medium and long triglycerides and an aqueous phase encased in an amphiphilic shell. This manuscript crosstalks LNCs for various biomedical applications. A detailed elaboration of the structural composition, methods of preparation, and quality control aspects has also been attained, with particular emphasis on application approaches, ongoing challenges, and their possible resolution. The manuscript also expounds the preclinical data and discusses the patents atlas of LNCs to assist biomedical scientists working in this area and foster additional research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

© 2022 American Chemical Society

Fig. 5

Similar content being viewed by others

Abbreviations

AIDS:

Acquired Immunodeficiency syndrome

AMPs:

Antimicrobial peptides

AUC :

Area under the curve

CNS:

Central nervous system

DNA:

Deoxyribonucleic acid

DSC:

Differential scanning calorimetry

EPR :

Enhanced permeation and retention

FDA:

Food and drug administration

FTIR:

Fourier-transform infrared spectroscopy

GRAS:

Generally regarded as safe

HPLC:

High-performance liquid chromatography

LNCs:

LNCs

MAB:

Monoclonal Antibodies

MSNs:

Mesoporous silica nanoparticles

O/W:

Oil in water

PBS:

Phosphate bovine serum

PEG:

Polyethylene glycol

PEO:

Poly ethylene oxide

PIT:

Phase inversion temperature

PIZ:

Phase inversion zone

PK/PD:

Pharmacokinetic/pharmacodynamic

PNIPAM:

Poly (N-isopropyl acrylamide

PTX:

Paclitaxel

RPV:

Ropivacaine

SEM:

Scanning electron microscope

si-RNA:

Small interfering RNA

TEM:

Transmission electron microscopy

W/O:

Water in oil

XRD:

X-Ray diffraction analysis

References

  1. Bayda SA-OX, Adeel M, Tuccinardi TA-O, Cordani MA-O, Rizzolio FA-O (2019) The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine LID. Molecules. https://doi.org/10.3390/molecules25010112

    Article  PubMed Central  PubMed  Google Scholar 

  2. Thapa RK, Kim JO (2023) Nanomedicine-based commercial formulations: current developments and future prospects. J Pharm Investig 53:19–33

    Article  CAS  PubMed  Google Scholar 

  3. Jeevanandam J, Dable-Tupas G, De Guzman MB (2022) Chapter 6 - Applications of nanotechnology in pharmaceutical products. In: Egbuna C, Găman M-A, Jeevanandam J (eds) Applications of nanotechnology in drug discovery and delivery. Elsevier, Amsterdam

    Google Scholar 

  4. Hunt WH (2004) Nanomaterials: Nomenclature, novelty, and necessity. JOM 56:13–18

    Article  Google Scholar 

  5. Litter MI, Ahmad A (2023) The World of Nanotechnology. CRC Press, Industrial Applications of Nanoparticles

    Book  Google Scholar 

  6. Bhagyaraj SM, Oluwafemi OS (2018) Nanotechnology: the science of the invisible. Elsevier, Synthesis of inorganic nanomaterials

    Google Scholar 

  7. Hulla JE, Sahu SC, Hayes AW (2015) Nanotechnology: History and future. Hum Exp Toxicol 34:1318–1321

    Article  CAS  PubMed  Google Scholar 

  8. Chakravarty M, Vora A (2021) Nanotechnology-based antiviral therapeutics. Drug Deliv Transl Res 11:748–787

    Article  CAS  PubMed  Google Scholar 

  9. Singh A, Amiji MM (2022) Application of nanotechnology in medical diagnosis and imaging. Curr Opin Biotechnol 74:241–246

    Article  CAS  PubMed  Google Scholar 

  10. Huynh NT, Passirani C, Saulnier P, Benoit J-P (2009) Lipid nanocapsules: a new platform for nanomedicine. Int J Pharm 379:201–209

    Article  CAS  PubMed  Google Scholar 

  11. Kumar R, Dkhar DS, Kumari R, Divya, Mahapatra S, Dubey VK, Chandra P (2022) Lipid based nanocarriers: Production techniques, concepts, and commercialization aspect. Journal of Drug Delivery Science and Technology 74:103526

    Article  CAS  Google Scholar 

  12. Gaber M, Medhat W, Hany M, Saher N, Fang J-Y, Elzoghby A (2017) Protein-lipid nanohybrids as emerging platforms for drug and gene delivery: Challenges and outcomes. J Control Release 254:75–91

    Article  CAS  PubMed  Google Scholar 

  13. Choi YH, Han H-K (2018) Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. J Pharm Investig 48:43–60

    Article  CAS  PubMed  Google Scholar 

  14. Samimi S, Maghsoudnia N, Eftekhari RB, Dorkoosh F (2019) Chapter 3 - Lipid-based nanoparticles for drug delivery systems. In: Mohapatra SS, Ranjan S, Dasgupta N, Mishra RK, Thomas S (eds) Characterization and biology of nanomaterials for drug delivery. Elsevier, Amsterdam

    Google Scholar 

  15. Angelova A, Garamus VM, Angelov B, Tian Z, Li Y, Zou A (2017) Advances in structural design of lipid-based nanoparticle carriers for delivery of macromolecular drugs, phytochemicals and anti-tumor agents. Adv Coll Interface Sci 249:331–345

    Article  CAS  Google Scholar 

  16. Mhule D, Kalhapure RS, Jadhav M, Omolo CA, Rambharose S, Mocktar C, Singh S, Waddad AY, Ndesendo VM, Govender T (2018) Synthesis of an oleic acid based pH-responsive lipid and its application in nanodelivery of vancomycin. Int J Pharm 10:149–159

    Article  Google Scholar 

  17. Wang R, Billone PS, Mullett WM (2013) Nanomedicine in action: an overview of cancer nanomedicine on the market and in clinical trials. J Nanomaterials

  18. Hoang Thi TT, Suys EJA, Lee JS, Nguyen DH, Park KD, Truong NP (2021) Lipid-based nanoparticles in the clinic and clinical trials: from cancer nanomedicine to COVID-19 vaccines. Vaccines 9:359

    Article  Google Scholar 

  19. Chouchou A, Aubert-Pouessel A, Dorandeu C, Zghaib Z, Cuq P, Devoisselle J-M, Bonnet P-A, Bégu S, Deleuze-Masquefa C (2017) Lipid nanocapsules formulation and cellular activities evaluation of a promising anticancer agent: EAPB0503. Int J Pharmaceut Investi 7:155

    Article  CAS  Google Scholar 

  20. Morille M, Montier T, Legras P, Carmoy N, Brodin P, Pitard B, Benoît J-P, Passirani C (2010) Long-circulating DNA lipid nanocapsules as new vector for passive tumor targeting. Biomaterials 31:321–329

    Article  CAS  PubMed  Google Scholar 

  21. Albanawany NM, Samy DM, Zahran N, El-Moslemany RM, Elsawy SM, Abou Nazel MW (2022) Histopathological, physiological and biochemical assessment of resveratrol nanocapsules efficacy in bleomycin-induced acute and chronic lung injury in rats. Drug Delivery 29:16

    Article  Google Scholar 

  22. Mora-Huertas CE, Fessi H, Elaissari A (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385:113–142

    Article  CAS  PubMed  Google Scholar 

  23. Hussein A, Abdel-Mottaleb MMA, El-Assal M, Sammour O (2020) Novel biocompatible essential oil-based lipid nanocapsules with antifungal properties. J Drug Delivery Sci Technol 56:101605

    Article  CAS  Google Scholar 

  24. Carradori D, Saulnier P, Préat V, Des Rieux A, EYER J (2016) NFL-lipid nanocapsules for brain neural stem cell targeting in vitro and in vivo. J Control Release 238:253–262

    Article  CAS  PubMed  Google Scholar 

  25. Lagarce F, Passirani C (2016) Nucleic-acid delivery using lipid nanocapsules. Curr Pharm Biotechnol 17:723–727

    Article  CAS  PubMed  Google Scholar 

  26. Moura RP, Pacheco C, Pêgo AP, Des Rieux A, Sarmento B (2020) Lipid nanocapsules to enhance drug bioavailability to the central nervous system. J Controlled Release 322:390–400

    Article  CAS  Google Scholar 

  27. Kumar P, Yadav N, Chaudhary B, Umakanthan S, Chattu VK, Kazmi I, AL-Abbasi FA, Alzarea SI, Afzal O, Altamimi ASA (2023) Lipid nanocapsule: a novel approach to drug delivery system formulation development. Curr Pharm Biotechnol 25(3):268–284

    Article  Google Scholar 

  28. Groo AC, Saulnier P, Gimel JC, Gravier J, Ailhas C, Benoit JP, Lagarce F (2013) Fate of paclitaxel lipid nanocapsules in intestinal mucus in view of their oral delivery. Int J Nanomed 8:11

    Google Scholar 

  29. Groo A-C, Matougui N, Umerska A, Saulnier P (2018) Reverse micelle-lipid nanocapsules: a novel strategy for drug delivery of the plectasin derivate AP138 antimicrobial peptide. Int J Nanomed 13:7565–7574

    Article  CAS  Google Scholar 

  30. Kasuya T, Kuroda SI (2009) Nanoparticles for human liver-specific drug and gene delivery systems: in vitro and in vivo advances. Expert Opin Drug Discov 6(1):39–52

    Article  CAS  Google Scholar 

  31. Zhai Y, Yang X, Zhao L, Wang Z, Zhai G (2014) Lipid nanocapsules for transdermal delivery of ropivacaine: in vitro and in vivo evaluation. Int J Pharm 471:103–111

    Article  CAS  PubMed  Google Scholar 

  32. Kalvodová A, Zbytovská J (2022) Lipid nanocapsules enhance the transdermal delivery of drugs regardless of their physico-chemical properties. Int J Pharm 628:122264

    Article  PubMed  Google Scholar 

  33. Abd-El-Azim H, Tekko IA, Ali A, Ramadan A, Nafee N, Khalafallah N, Rahman T, Mcdaid W, Aly RG, Vora LK, Bell SJ, Furlong F, Mccarthy HO, Donnelly RF (2022) Hollow microneedle assisted intradermal delivery of hypericin lipid nanocapsules with light enabled photodynamic therapy against skin cancer. J Control Release 348:849–869

    Article  CAS  PubMed  Google Scholar 

  34. Mwema A, Bottemanne P, Paquot A, Ucakar B, Vanvarenberg K, Alhouayek M, Muccioli GG, Des Rieux A (2023) Lipid nanocapsules for the nose-to-brain delivery of the anti-inflammatory bioactive lipid PGD2-G. Nanomed Nanotechnol Biol Med 48:102633

    Article  CAS  Google Scholar 

  35. Kaeokhamloed N, Roger E, Béjaud J, Lautram N, Manero F, Perrot R, Briet M, Abbara C, Legeay S (2021) New in vitro coculture model for evaluating intestinal absorption of different lipid nanocapsules. Pharmaceutics 13:595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Graván P, Aguilera-Garrido A, Marchal JA, Navarro-Marchal SA, Galisteo-González F (2023) Lipid-core nanoparticles: Classification, preparation methods, routes of administration and recent advances in cancer treatment. Adv Colloid Interf Sci 314:102871

    Article  Google Scholar 

  37. Thomas O, Lagarce F (2013) Lipid Nanocapsules: A Nanocarrier Suitable for Scale-Up Process. J Drug Delivery Sci Technol 23:555–559

    Article  CAS  Google Scholar 

  38. Shete VS, Telange DR, Mahajan NM, Pethe AM, Mahapatra DKJDD (2023) Development of phospholipon® 90H complex nanocarrier with enhanced oral bioavailability and anti-inflammatory potential of genistein. Drug Delivery 30:2162158

    Article  PubMed Central  PubMed  Google Scholar 

  39. Idlas P, Lepeltier E, Jaouen G, Passirani C (2021) Ferrocifen loaded lipid nanocapsules: a promising anticancer medication against multidrug resistant tumors. Cancers 13:2291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Dabholkar N, Waghule T, Krishna Rapalli V, Gorantla S, Alexander A, Narayan Saha R, Singhvi G (2021) Lipid shell lipid nanocapsules as smart generation lipid nanocarriers. J Mol Liq 339:117145

    Article  CAS  Google Scholar 

  41. Anton N, Benoit J-P, Saulnier P (2008) Design and production of nanoparticles formulated from nanoemulsion templates—A review. J Control Release 128:185–199

    Article  CAS  PubMed  Google Scholar 

  42. Gershanik T, Benita S (2000) Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. Eur J Pharm Biopharm 50:179–188

    Article  CAS  PubMed  Google Scholar 

  43. Zafar S, Akhter S, Garg N, Selvapandiyan A, Jain GK, Ahmad FJ (2020) Co-encapsulation of docetaxel and thymoquinone in mPEG-DSPE-vitamin E TPGS-lipid nanocapsules for breast cancer therapy: Formulation optimization and implications on cellular and in vivo toxicity. Eur J Pharm Biopharm 148:10–26

    Article  CAS  PubMed  Google Scholar 

  44. Abdel-Mottaleb MM, Neumann D, Lamprecht A (2010) In vitro drug release mechanism from lipid nanocapsules (LNC). Int J Pharm 390:208–213

    Article  CAS  PubMed  Google Scholar 

  45. Hureaux J, Lagarce F, Gagnadoux F, Vecellio L, Clavreul A, Roger E, Kempf M, Racineux J-L, Diot P, Benoit J-P (2009) Lipid nanocapsules: ready-to-use nanovectors for the aerosol delivery of paclitaxel. Eur J Pharm Biopharm 73:239–246

    Article  CAS  PubMed  Google Scholar 

  46. Moinard-Chécot D, Chevalier Y, Briançon S, Beney L, Fessi H (2008) Mechanism of nanocapsules formation by the emulsion–diffusion process. J Colloid Interface Sci 317:458–468

    Article  PubMed  Google Scholar 

  47. Mishra DK, Shandilya R, Mishra PKJNN (2018) BIOLOGY & MEDICINE. Lipid based nanocarriers: a translational perspective 14:2023–2050

    CAS  Google Scholar 

  48. Draper B, Yee WL, Pedrana A, Kyi KP, Qureshi H, Htay H, Naing W, Thompson AJ, Hellard M, Howell JJTLRHWP (2022) Reducing liver disease-related deaths in the Asia-Pacific: the important role of decentralised and non-specialist led hepatitis C treatment for cirrhotic patients. Lancet Reg Health–West Pac 20:100359

    PubMed Central  PubMed  Google Scholar 

  49. Ashour AA, Ramadan AA, Abdelmonsif DA, El-Kamel AHJIJOP (2020) Enhanced oral bioavailability of Tanshinone IIA using lipid nanocapsules: formulation, in-vitro appraisal and pharmacokinetics. Int J Pharm 586:119598

    Article  CAS  PubMed  Google Scholar 

  50. Pensel PE, Gamboa GU, Fabbri J, Ceballos L, Bruni SS, Alvarez LI, Allemandi D, Benoit JP, Palma SD, Elissondo MC (2015) Cystic echinococcosis therapy: albendazole-loaded lipid nanocapsules enhance the oral bioavailability and efficacy in experimentally infected mice. Acta Trop 152:185–194

    Article  CAS  PubMed  Google Scholar 

  51. Ramadan AA (2010) A study of some lipid-based drug delivery systems (Doctoral dissertation, Université d'Angers)

  52. Li W, Szoka FC (2007) Lipid-based nanoparticles for nucleic acid delivery. Pharmaceu Res. 24:438–449

    Article  Google Scholar 

  53. Resnier P, Lepeltier E, Emina AL, Galopin N, Bejaud J, David S, Ballet C, Benvegnu T, Pecorari F, Chourpa I (2019) Benoit JP (2019) Model Affitin and PEG modifications onto siRNA lipid nanocapsules: cell uptake and in vivo biodistribution improvements. RSC Adv 9:27264–27278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Skandrani N, Barras A, Legrand D, Gharbi T, Boulahdour H, Boukherroub R (2014) Lipid nanocapsules functionalized with polyethyleneimine for plasmid DNA and drug co-delivery and cell imaging. Nanoscale 6(13):7379–7390

    Article  CAS  PubMed  Google Scholar 

  55. Lemaire L, Bastiat G, Franconi F, Lautram N, Dan TDT, Garcion E, Saulnier P, Benoit J-P (2013) Perfluorocarbon-loaded lipid nanocapsules as oxygen sensors for tumor tissue pO2 assessment. Eur J Pharmaceu Biopharmaceu 84:479–486

    Article  CAS  Google Scholar 

  56. Nel J, Desmet CM, Driesschaert B, Saulnier P, Lemaire L, Gallez B (2019) Preparation and evaluation of trityl-loaded lipid nanocapsules as oxygen sensors for electron paramagnetic resonance oximetry. Int J Pharmaceu. 554:87–92

    Article  CAS  Google Scholar 

  57. Nandwana V, Singh A, You MM, Zhang G, Higham J, Zheng TS, Li Y, Prasad PV, Dravid VP (2018) Magnetic lipid nanocapsules (MLNCs): Self-assembled lipid-based nanoconstruct for non-invasive theranostic applications. J Mater Chem B 6:1026–1034

    Article  CAS  PubMed  Google Scholar 

  58. Brum AAS, Dos Santos PP, Da Silva MM, Paese K, Guterres SS, Costa TMH, Pohlmann AR, Jablonski A, Flôres SH, De Oliveira Rios AJC, Physicochemical SA, Aspects E (2017) Lutein-loaded lipid-core nanocapsules: physicochemical characterization and stability evaluation. Colloids Surf, A 522:477–484

    Article  CAS  Google Scholar 

  59. Da Silva ALM, Contri RV, Jornada DS, Pohlmann AR, Guterres SS (2013) Vitamin K1–loaded lipid-core nanocapsules: physicochemical characterization and in vitro skin permeation. Skin Res Technol 19:e223–e230

    Article  PubMed  Google Scholar 

  60. Urimi D, Hellsing M, Mahmoudi N, Soderberg C, Widenbring R, Gedda L, Edwards K, Loftsson T, Schipper N (2022) Structural characterization study of a lipid nanocapsule formulation intended for drug delivery applications using small-angle scattering techniques. Mol Pharm 19:1068–1077

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Tsakiris N, Papavasileiou M, Bozzato E, Lopes A, Vigneron AM, Préat V (2019) Combinational drug-loaded lipid nanocapsules for the treatment of cancer. Int J Pharm 569:118588

    Article  CAS  PubMed  Google Scholar 

  62. Arrua EC, Hartwig O, Loretz B, Murgia X, Ho D-K, Bastiat G, Lehr C-M, Salomon CJ (2023) Formulation of benznidazole-lipid nanocapsules: Drug release, permeability, biocompatibility, and stability studies. Int J Pharm 642:123120

    Article  CAS  PubMed  Google Scholar 

  63. Clavreul A, Roger E, Pourbaghi-Masouleh M, Lemaire L, Tétaud C, Menei P (2018) Development and characterization of sorafenib-loaded lipid nanocapsules for the treatment of glioblastoma. Drug Delivery 25:1756–1765

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Lollo G, Ullio-Gamboa G, Fuentes E, Matha K, Lautram N, Benoit J-P (2018) In vitro anti-cancer activity and pharmacokinetic evaluation of curcumin-loaded lipid nanocapsules. Mater Sci Eng, C 91:859–867

    Article  CAS  Google Scholar 

  65. Aparicio-Blanco J, Torres-Suarez A-I (2015) Glioblastoma multiforme and lipid nanocapsules: A review. J Biomed Nanotechnol 11:1283–1311

    Article  CAS  PubMed  Google Scholar 

  66. Kiani A, Fathi M, Ghasemi SMJIJOFP (2017) Production of novel vitamin D3 loaded lipid nanocapsules for milk fortification. Int J Food Prop 20:2466–2476

    Article  CAS  Google Scholar 

  67. Neupane YR, Srivastava M, Ahmad N, Kumar N, Bhatnagar A, Kohli K (2014) Lipid based nanocarrier system for the potential oral delivery of decitabine: Formulation design, characterization, ex vivo, and in vivo assessment. Int J Pharm 477:601–612

    Article  CAS  PubMed  Google Scholar 

  68. Muller RH, Keck CM (2004) Challenges and solutions for the delivery of biotech drugs – a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol 113:151–170

    Article  CAS  PubMed  Google Scholar 

  69. Shah MR, Imran M, Ullah S (2017) Chapter 2 - Nanostructured lipid carriers. In: Shah MR, Imran M, Ullah S (eds) Lipid-based nanocarriers for drug delivery and diagnosis. William Andrew Publishing, New York

    Google Scholar 

  70. Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP (2002) A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm Res 19:875–880

    Article  CAS  PubMed  Google Scholar 

  71. Christensen G, Urimi D, Lorenzo-Soler L, Schipper N, Paquet-Durand F (2023) Ocular permeability, intraocular biodistribution of lipid nanocapsule formulation intended for retinal drug delivery. Eur J Pharm Biopharm 187:175–183

    Article  CAS  PubMed  Google Scholar 

  72. Roger E, Gimel JC, Bensley C, Klymchenko AS, Benoit JP (2017) Lipid nanocapsules maintain full integrity after crossing a human intestinal epithelium model. J Controlled Release 253:11–18

    Article  CAS  Google Scholar 

  73. Guidance FDA (2006) Quality Systems approach to pharmaceutical current good manufacturing practice regulations.

  74. Sharma B (2007) Immunogenicity of therapeutic proteins. Part 2: impact of container closures. Biotechnol Adv 25(3):310–317

    Article  CAS  PubMed  Google Scholar 

  75. Barends D, Dressman J, Hubbard J, Junginger H, Patnaik R, Polli J, Stavchansky S (2017) Multisource (generic) pharmaceutical products: guidelines on registration requirements to establish interchangeability draft revision. WHO, Geneva, Switzerland

  76. Saulnier P, Benoit J-P, Anton N (2016) Universite dAngers and Inserm Transfert SA, 2016. Nanocapsules with a liquid lipid core charged with water-soluble or water-dispersible active agents. U.S. Patents 9,333,180

  77. Patrick Saulnier MF (2015) Process for preparing lipid nanoparticles us patent application. J-PB Angers (FR) Nicolas Anton 12:663960

    Google Scholar 

  78. Heurtault B, Saulnier P, Benoit JP, Proust JE, Pech B, Richard J (2011) Universite dAngers and Ethypharm SAS, 2011. Lipid preparation process and use as medicine. U.S. Patent 8,057,823

  79. Hoarau D, Delmas P, Delmas JC, Ethypharm SAS (2005) Stealth lipid nanocapsules, methods for the preparation thereof and use thereof as a carrier for active principle (s). U.S. Patent Application 10/518,173

  80. Benoit JP, Lamprecht A, Institut National de la Sante et de la Recherche Medicale INSERM (2006) Use of p-glycoprotein inhibitor surfactants at the surface of a colloidal carrier. U.S. Patent Application 10/545,238

  81. Beloqui A, Yining X, Préat V, Patrice CANI, Universite Catholique de Louvain UCL (2022) Lipid nanocapsules charged with incretin mimetics. U.S. Patent Application 17/620,356

  82. Heurtault B, Saulnier P, Benoit JP, Proust JE, Pech B, Richard J (2011) Lipid nanocapsules, preparation process and use as medicine. Google Patents

  83. Petit JLV, Gonzalez RD, Botello AF, Lipotec SA (2013) Lipid nanoparticle capsules. U.S. Patent Application 13/636,909

Download references

Acknowledgements

The author, RKT, acknowledges the Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, India, for supporting the drug discovery and formulation research at NIPER Ahmedabad. R.K.T also acknowledges the Department of Science and Technology, Government of India, for a Core Research Grant funding (File No. CRG/2021/005402) and also acknowledges the Indian Council of Medical Research (ICMR), New Delhi, for the grant File Id: 2021-14161 and grant File Id: IIRP-2023-4849/F1 for supporting research in RKT lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar Tekade.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 198 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otavi, S., Lad, N., Shah, S. et al. Lipidic Nanosystem as State-of-the-Art Nanovehicle for Biomedical Applications. Indian J Microbiol (2024). https://doi.org/10.1007/s12088-024-01298-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12088-024-01298-3

Keywords

Navigation